191,146 research outputs found

    Dynamical Friction in a Gas: The Supersonic Case

    Full text link
    Any gravitating mass traversing a relatively sparse gas experiences a retarding force created by its disturbance of the surrounding medium. In a previous contribution (Lee & Stahler 2011), we determined this dynamical friction force when the object's velocity was subsonic. We now extend our analysis to the supersonic regime. As before, we consider small perturbations created in the gas far from the gravitating object, and thereby obtain the net influx of linear momentum over a large, bounding surface. Various terms in the perturbation series formally diverge, necessitating an approximate treatment of the flow streamlines. Nevertheless, we are able to derive exactly the force itself. As in the subsonic case, we find that F=Mdot*V, where Mdot is the rate of mass accretion onto the object and V its instantaneous velocity with respect to distant background gas. Our force law holds even when the object is porous (e.g., a galaxy) or is actually expelling mass in a wind. Quantitatively, the force in the supersonic regime is less than that derived analytically by previous researchers, and is also less than was found in numerical simulations through the mid 1990s. We urge simulators to revisit the problem using modern numerical techniques. Assuming our result to be correct, it is applicable to many fields of astrophysics, ranging from exoplanet studies to galactic dynamics.Comment: Accepted to A&A. Comments from the community welcomed. 21 pages, 12 figure

    A Chemical turnstile

    Full text link
    A chemical turnstile is a device for transporting small, well-characterised doses of atoms from one location to another. A working turnstile has yet to be built, despite the numerous technological applications available for such a device. The key difficulty in manufacturing a chemical turnstile is finding a medium which will trap and transport atoms. Here we propose that ferroelastic twin walls are suitable for this role. Previous work shows that twin walls can act as two-dimensional trapping planes within which atomic transport is fast. We report simulations showing that a stress-induced reorientation of a twin wall can occur. This behaviour is ideal for chemical turnstile applications.Comment: 2 pages, 3 figure

    Unified description of pairing, trionic and quarteting states for one-dimensional SU(4) attractive fermions

    Full text link
    Paired states, trions and quarteting states in one-dimensional SU(4) attractive fermions are investigated via exact Bethe ansatz calculations. In particular, quantum phase transitions are identified and calculated from the quarteting phase into normal Fermi liquid, trionic states and spin-2 paired states which belong to the universality class of linear field-dependent magnetization in the vicinity of critical points. Moreover, unified exact results for the ground state energy, chemical potentials and complete phase diagrams for isospin S=1/2,1,3/2S=1/2, 1, 3/2 attractive fermions with external fields are presented. Also identified are the magnetization plateaux of mz=Ms/3m^z=M_s/3 and mz=2Ms/3m^z=2M_s/3, where MsM_s is the magnetization saturation value. The universality of finite-size corrections and collective dispersion relations provides a further test ground for low energy effective field theory.Comment: 13 pages, 4 figure
    • …
    corecore