1,422 research outputs found

    Novel water filtration of saline water in the outermost layer of mangrove roots

    Get PDF
    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.Creative Research Initiative (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of the Ministry of Science, ICT and Future Planning (MSIP) , National Research Foundation (NRF) of Korea , ICT R&D program of MSIP/IITP (Korea

    Surgical repair of descending thoracic and thoracoabdominal aortic aneurysm involving the distal arch: Open proximal anastomosis under deep hypothermia versus arch clamping technique

    Get PDF
    BackgroundSurgical repair of a descending thoracic and thoracoabdominal aortic aneurysm (DTA/TAAA) involving the distal arch is challenging and requires either deep hypothermic circulatory arrest (DHCA) or crossclamping of the distal arch. The aim of this study was to compare these 2 techniques in the treatment of DTA/TAAA involving the distal arch.MethodsFrom 1994 to 2012, 298 patients underwent open repair of DTA/TAAA through a left thoracotomy. One hundred seventy-four patients with distal arch involvement who were suitable for either DHCA (n = 81) or arch clamping (AC; n = 93), were analyzed. In-hospital outcomes were compared using propensity scores and inverse-probability-of-treatment weighting adjustment to reduce treatment selection bias.ResultsEarly mortality was 11.1% in the DHCA group and 8.6% in the AC group (P = .58). Major adverse outcomes included stroke in 16 patients (9.2%), low cardiac output syndrome in 15 (8.6%), paraplegia in 10 (5.7%), and multiorgan failure in 10 (5.7%). After adjustment, patients who underwent DHCA were at similar risk of death (odds ratio [OR], 1.14; P = .80) and permanent neurologic injury (OR, 0.95; P = .92) to those who underwent AC. Although prolonged ventilator support (>24 hours) was more frequent with DHCA than with AC (OR, 2.60; P = .003), DHCA showed a tendency to lower the risk of paraplegia (OR, 0.15; P = .057).ConclusionsCompared with AC, DHCA did not increase postoperative mortality and morbidity, except for prolonged ventilator support. However, DHCA may offer superior spinal cord protection to AC during repair of DTA/TAAA involving the distal arch

    Molecular cloning and expression of a novel human cDNA related to the diazepam binding inhibitor

    Get PDF
    AbstractIn order to isolate the unidentified autoantigens in autoimmune diabetes, a human pancreatic islet cDNA library was constructed and screened with the sera from the diabetic patients. From the library screening, one clone (DRS-1) that strongly reacted with the sera was isolated. Subsequent sequence analysis revealed that the clone was a novel cDNA related to the diazepam binding inhibitor. DRS-1 was expressed in most tissues including liver, lung, tonsil, and thymus, in addition to pancreatic islets. DRS-1 was in vitro translated and the recombinant DRS-1 protein was expressed in Escherichia coli and purified. The size of the in vitro translated or bacterially expressed DRS-1 protein was in agreement with the conceptually translated polypeptide of DRS-1 cDNA. Further studies are required to test whether or not DRS-1 is a new autoantigen in autoimmune diabetes
    corecore