30 research outputs found

    Understanding customer malling behavior in an urban shopping mall using smartphones

    Get PDF
    Abstract This paper presents a novel customer malling behavior modeling framework for an urban shopping mall. As an automated computing framework using smartphones, it is designed to provide comprehensive understanding of customer behavior. We prototype the framework in a real-world urban shopping mall. Development consists of three steps; customer data collection, customer trace extraction, and behavior model analysis. We extract customer traces from a collection of 701-hour sensor data from 195 in-situ customers who installed our logging application at Android Market. The practical behavior model is created from the real traces. It has a multi-level structure to provide the holistic understanding of customer behavior from physical movement to service semantics. As far as we know, it is the first work to understand complex customer malling behavior in offline shopping malls

    Iterative Compression of End-to-End ASR Model using AutoML

    Full text link
    Increasing demand for on-device Automatic Speech Recognition (ASR) systems has resulted in renewed interests in developing automatic model compression techniques. Past research have shown that AutoML-based Low Rank Factorization (LRF) technique, when applied to an end-to-end Encoder-Attention-Decoder style ASR model, can achieve a speedup of up to 3.7x, outperforming laborious manual rank-selection approaches. However, we show that current AutoML-based search techniques only work up to a certain compression level, beyond which they fail to produce compressed models with acceptable word error rates (WER). In this work, we propose an iterative AutoML-based LRF approach that achieves over 5x compression without degrading the WER, thereby advancing the state-of-the-art in ASR compression

    AdNext: A Visit-Pattern-Aware Mobile Advertising System for Urban Commercial Complexes

    Get PDF
    As smartphones have become prevalent, mobile advertising is getting significant attention as being not only a killer application in future mobile commerce, but also as an important business model of emerging mobile applications to monetize them. In this paper, we present AdNext, a visit-pattern-aware mobile advertising system for urban commercial complexes. AdNext can provide highly relevant ads to users by predicting places that the users will next visit. AdNext predicts the next visit place by learning the sequential visit patterns of commercial complex users in a collective manner. As one of the key enabling techniques for AdNext, we develop a probabilistic prediction model that predicts users ’ next visit place from their place visit history. To automatically collect the users ’ place visit history by smartphones, we utilize Wi-Fi-based indoor localization. We demonstrate the feasibility of AdNext by evaluating the accuracy of the prediction model. For the evaluation, we used a dataset collected from COEX Mall, the largest commercial complex in South Korea. Also, we implemented an initial prototype of AdNext with the latest smartphones, and deployed it in COEX Mall

    Comparison of DeepNovo, PointNovo, Casanovo, NovoB (Forward), NovoB (Reverse) and NovoB (Bidirection).

    No full text
    These figures show the peptide-level and amino acid-level accuracy rates of six models on all nine species.</p

    Accuracy-coverage curve for DeepNovo, Casanovo and NovoB.

    No full text
    This figure evaluates peptide-level accuracy rates across all coverages for nine species. The x-axis represents the peptide-level accuracy, while the y-axis denotes the coverage. Additionally, the AUC value is expressed for each curve.</p
    corecore