287,740 research outputs found
On modeling and the use of the NASTRAN thermal analyzer
Eight alternative modeling techniques to specify prescribed temperature at grid or scalar points for transient thermal analyses are presented. Four cases are for constant temperatures, and the others are time varying temperature functions. Theoretical explications and detailed listing of input data cards used for illustrating different modelings are given. It is shown that the NTA is exploited to extend beyond its normal capabilities through innovative modeling techniques. In addition, the effect of node valency on the energy distribution grid points is illustrated and discussed. Guidelines to delineate this effect are given
NASTRAN thermal analyzer status, experience, and new developments
The unique finite element based NASTRAN Thermal Analyzer originally developed as a general purpose heat transfer analysis incorporated into the NASTRAN system is described. The current status, experiences from field applications, and new developments are included
Structural-Thermal-Optical Program (STOP)
A structural thermal optical computer program is developed which uses a finite element approach and applies the Ritz method for solving heat transfer problems. Temperatures are represented at the vertices of each element and the displacements which yield deformations at any point of the heated surface are interpolated through grid points
Unitary Irreducible Representations of a Lie Algebra for Matrix Chain Models
There is a decomposition of a Lie algebra for open matrix chains akin to the
triangular decomposition. We use this decomposition to construct unitary
irreducible representations. All multiple meson states can be retrieved this
way. Moreover, they are the only states with a finite number of non-zero
quantum numbers with respect to a certain set of maximally commuting linearly
independent quantum observables. Any other state is a tensor product of a
multiple meson state and a state coming from a representation of a quotient
algebra that extends and generalizes the Virasoro algebra. We expect the
representation theory of this quotient algebra to describe physical systems at
the thermodynamic limit.Comment: 46 pages, no figure; LaTeX2e, amssymb, latexsym; typos correcte
Realising Team-Working in the Field: An Agent-based Approach
Multi-agent systems technology is applied to enable co-operation between mobile workers in the field, minimising user intervention and increasing reachability. A component-based approach is taken to simplify the management of deployed co-operation services. A Personal Assistant running on a mobile device is introduced to show how an intelligent and autonomous agent can increase the utility of users during workforce co-operation processes. Finally, a real world trial of the technology by network installation and maintenance engineers in the UK is described. Some technical issues revealed during the trial are discussed, as is the impact of the technology on the business process
mPower: A component-based development framework for multi-agent systems to support business processes
One of the obstacles preventing the widespread adoption of multi-agent systems in industry is the difficulty of implementing heterogeneous interactions among participating agents via asynchronous messages. This difficulty arises from the need to understand how to combine elements of various content languages, ontologies, and interaction protocols in order to construct meaningful and appropriate messages. In this paper mPower, a component-based layered framework for easing the development of multi-agent systems, is described, and the facility for customising the components for reuse in similar domains is explained. The framework builds on the JADE-LEAP platform, which provides a homogeneous layer over diverse operating systems and hardware devices, and allows ubiquitous deployment of applications built on multi-agent systems both in wired and wireless environments. The use of the framework to develop mPowermobile , a multi-agent system to support mobile workforces, is reported
TeamWorker: An agent-based support system for mobile task execution
Traditional workflow management systems are considered insufficiently flexible to support autonomous job management via close team working. This paper proposes a multi-agent system approach to enhancing existing workflow management systems to enable team-based job management in the field of telecommunications service provision and maintenance. This paper adopts a component-based approach and explains how applications can be developed by customising the generic components provided by a multi-agent systems framework
Mixing 4D-Equipped and Unequipped Aircraft in the Terminal Area
On-board 4D guidance systems, which predict and control the touchdown time of an aircraft to an accuracy of a few seconds throughout the descent, were developed and demonstrated in several flight test programs. However, in addition to refinements of the on board system, two important issues still need to be considered. First, in order to make effective use of these on-board systems, it is necessary to understand and develop the interactions of the airborne and air traffic control (ATC) system in the proposed advanced environment. Unless the total system is understood, the advanced on-board system may prove unusable from an ATC standpoint. Second, in planning for a future system in which all aircraft are 4D equipped, it is necessary to confront the transition situation in which some percentage of traffic must still be handled by conventional means. In terms of 4D, this means that some traffic must still be given radar vectors and speed clearances (that is, be spaced by conventional distance separation techniques), while the 4D-equipped aircraft need to be issued time assignments. These apparent differences are reconciled and efficient ATC operation is developed
- …
