1,323 research outputs found

    Online Search with Predictions: Pareto-optimal Algorithm and its Applications in Energy Markets

    Full text link
    This paper develops learning-augmented algorithms for energy trading in volatile electricity markets. The basic problem is to sell (or buy) kk units of energy for the highest revenue (lowest cost) over uncertain time-varying prices, which can framed as a classic online search problem in the literature of competitive analysis. State-of-the-art algorithms assume no knowledge about future market prices when they make trading decisions in each time slot, and aim for guaranteeing the performance for the worst-case price sequence. In practice, however, predictions about future prices become commonly available by leveraging machine learning. This paper aims to incorporate machine-learned predictions to design competitive algorithms for online search problems. An important property of our algorithms is that they achieve performances competitive with the offline algorithm in hindsight when the predictions are accurate (i.e., consistency) and also provide worst-case guarantees when the predictions are arbitrarily wrong (i.e., robustness). The proposed algorithms achieve the Pareto-optimal trade-off between consistency and robustness, where no other algorithms for online search can improve on the consistency for a given robustness. Further, we extend the basic online search problem to a more general inventory management setting that can capture storage-assisted energy trading in electricity markets. In empirical evaluations using traces from real-world applications, our learning-augmented algorithms improve the average empirical performance compared to benchmark algorithms, while also providing improved worst-case performance

    Stochastic Analysis on RAID Reliability for Solid-State Drives

    Full text link
    Solid-state drives (SSDs) have been widely deployed in desktops and data centers. However, SSDs suffer from bit errors, and the bit error rate is time dependent since it increases as an SSD wears down. Traditional storage systems mainly use parity-based RAID to provide reliability guarantees by striping redundancy across multiple devices, but the effectiveness of RAID in SSDs remains debatable as parity updates aggravate the wearing and bit error rates of SSDs. In particular, an open problem is that how different parity distributions over multiple devices, such as the even distribution suggested by conventional wisdom, or uneven distributions proposed in recent RAID schemes for SSDs, may influence the reliability of an SSD RAID array. To address this fundamental problem, we propose the first analytical model to quantify the reliability dynamics of an SSD RAID array. Specifically, we develop a "non-homogeneous" continuous time Markov chain model, and derive the transient reliability solution. We validate our model via trace-driven simulations and conduct numerical analysis to provide insights into the reliability dynamics of SSD RAID arrays under different parity distributions and subject to different bit error rates and array configurations. Designers can use our model to decide the appropriate parity distribution based on their reliability requirements.Comment: 12 page

    Hyperoxia resensitizes chemoresistant human glioblastoma cells to temozolomide

    Get PDF
    Temozolomide (TMZ) is standard chemotherapy for glioblastoma multiforme (GBM). Intratumoral hypoxia is common in GBM and may be associated with the development of TMZ resistance. Oxygen therapy has previously been reported to potentiate the effect of chemotherapy in cancer. In this study, we investigated whether hyperoxia can enhance the TMZ-induced cytotoxicity of human GBM cells, and whether and how it would resensitize TMZ-resistant GBM cells to TMZ. TMZ-sensitive human GBM cells (D54-S and U87-S) were treated with TMZ to develop isogenic subclones of TMZ-resistant cells (D54-R and U87-R). All cell lines were then exposed to different oxygen levels (1, 21, 40, or 80 %), with or without concomitant TMZ treatment, before assessment of cell cytotoxicity and morphology. Cell death and survival pathways elicited by TMZ and/or hyperoxia were elucidated by western blotting. Our results showed that TMZ sensitivity of both chemo-sensitive and resistant cells was enhanced significantly under hyperoxia. At the cell line-specific optimum oxygen concentration (D54-R, 80 %; U87-R, 40 %), resistant cells had the same response to TMZ as the parent chemosensitive cells under normoxia via the caspase-dependent pathway. Both TMZ and hyperoxia were associated with increased phosphorylation of ERK p44/42 MAPK (Erk1/2), but to a lesser extent in D54-R cells, suggesting that Erk1/2 activity may be involved in regulation of hyperoxia and TMZ-mediated cell death. Overall, hyperoxia enhanced TMZ toxicity in GBM cells by induction of apoptosis, possibly via MAPK-related pathways. Induced hyperoxia is a potentially promising approach for treatment of TMZ-resistant GBM.published_or_final_versio

    Autonomous Diagnostic Imaging Performed by Untrained Operator Using Augmented Reality as a Form of "Just-in-Time" Training

    Get PDF
    We will address the Human Factors and Performance Team, "Risk of performance errors due to training deficiencies" by improving the JIT training materials for ultrasound and OCT imaging by providing advanced guidance in a detailed, timely, and user-friendly manner. Specifically, we will (1) develop an audio-visual tutorial using AR that guides non-experts through an abdominal trauma ultrasound protocol; (2) develop an audio-visual tutorial using AR to guide an untrained operator through the acquisition of OCT images; (3) evaluate the quality of abdominal ultrasound and OCT images acquired by untrained operators using AR guidance compared to images acquired using traditional JIT techniques (laptop-based training conducted before image acquisition); and (4) compare the time required to complete imaging studies using AR tutorials with images acquired using current JIT practices to identify areas for time efficiency improvements. Two groups of subjects will be recruited to participate in this study. Operator-subjects, without previous experience in ultrasound or OCT, will be asked to perform both procedures using either the JIT training with AR technology or the traditional JIT training via laptop. Images acquired by inexperienced operator-subjects will be scored by experts in that imaging modality for diagnostic and research quality; experts will be blinded to the form of JIT used to acquire the images. Operator-subjects also will be asked to submit feedback to improve the training modules used during the scans to improve future training modules. Scanned-subjects will be a small group individuals from whom all images will be acquired

    MicroRNA-210 and endoplasmic reticulum chaperones in the regulation of chemoresistance in glioblastoma

    Get PDF
    Glioblastoma multiforme (GBM) is the commonest primary brain tumour in adults characterized by relentless recurrence due to resistance towards the standard chemotherapeutic agent temozolomide (TMZ). Prolyl 4-hydroxylase, beta polypeptide (P4HB), an endoplasmic reticulum (ER) chaperone, is known to be upregulated in TMZ-resistant GBM cells. MicroRNAs (miRNAs) are non-protein-coding transcripts that may play important roles in GBM chemoresistance. We surmised that miRNA dysregulations may contribute to P4HB upregulation, hence chemoresistance.We found that miRNA-210 (miR-210) was P4HB-targeting and was highly downregulated in TMZ-resistant GBM cells. Forced overexpression of miR-210 led to P4HB downregulation and a reduction in TMZ-resistance. A reciprocal relationship between their expressions was also verified in clinical glioma specimens. Our study is the first to demonstrate a potential link between miR-210 and ER chaperone in determining chemosensitivity in GBM. The findings have important translational implications in suggesting new directions of future studies.published_or_final_versio

    Individual prognosis at diagnosis in nonmetastatic prostate cancer: Development and external validation of the PREDICT Prostate multivariable model.

    Get PDF
    BACKGROUND: Prognostic stratification is the cornerstone of management in nonmetastatic prostate cancer (PCa). However, existing prognostic models are inadequate-often using treatment outcomes rather than survival, stratifying by broad heterogeneous groups and using heavily treated cohorts. To address this unmet need, we developed an individualised prognostic model that contextualises PCa-specific mortality (PCSM) against other cause mortality, and estimates the impact of treatment on survival. METHODS AND FINDINGS: Using records from the United Kingdom National Cancer Registration and Analysis Service (NCRAS), data were collated for 10,089 men diagnosed with nonmetastatic PCa between 2000 and 2010 in Eastern England. Median follow-up was 9.8 years with 3,829 deaths (1,202 PCa specific). Totals of 19.8%, 14.1%, 34.6%, and 31.5% of men underwent conservative management, prostatectomy, radiotherapy (RT), and androgen deprivation monotherapy, respectively. A total of 2,546 men diagnosed in Singapore over a similar time period represented an external validation cohort. Data were randomly split 70:30 into model development and validation cohorts. Fifteen-year PCSM and non-PCa mortality (NPCM) were explored using separate multivariable Cox models within a competing risks framework. Fractional polynomials (FPs) were utilised to fit continuous variables and baseline hazards. Model accuracy was assessed by discrimination and calibration using the Harrell C-index and chi-squared goodness of fit, respectively, within both validation cohorts. A multivariable model estimating individualised 10- and 15-year survival outcomes was constructed combining age, prostate-specific antigen (PSA), histological grade, biopsy core involvement, stage, and primary treatment, which were each independent prognostic factors for PCSM, and age and comorbidity, which were prognostic for NPCM. The model demonstrated good discrimination, with a C-index of 0.84 (95% CI: 0.82-0.86) and 0.84 (95% CI: 0.80-0.87) for 15-year PCSM in the UK and Singapore validation cohorts, respectively, comparing favourably to international risk-stratification criteria. Discrimination was maintained for overall mortality, with C-index 0.77 (95% CI: 0.75-0.78) and 0.76 (95% CI: 0.73-0.78). The model was well calibrated with no significant difference between predicted and observed PCa-specific (p = 0.19) or overall deaths (p = 0.43) in the UK cohort. Key study limitations were a relatively small external validation cohort, an inability to account for delayed changes to treatment beyond 12 months, and an absence of tumour-stage subclassifications. CONCLUSIONS: 'PREDICT Prostate' is an individualised multivariable PCa prognostic model built from baseline diagnostic information and the first to our knowledge that models potential treatment benefits on overall survival. Prognostic power is high despite using only routinely collected clinicopathological information.The Urology Foundatio

    Spin-charge separation in the single hole doped Mott antiferromagnet

    Full text link
    The motion of a single hole in a Mott antiferromagnet is investigated based on the t-J model. An exact expression of the energy spectrum is obtained, in which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is explicitly present. By identifying the phase string effect with spin backflow, we point out that spin-charge separation must exist in such a system: the doped hole has to decay into a neutral spinon and a spinless holon, together with the phase string. We show that while the spinon remains coherent, the holon motion is deterred by the phase string, resulting in its localization in space. We calculate the electron spectral function which explains the line shape of the spectral function as well as the ``quasiparticle'' spectrum observed in angle-resolved photoemission experiments. Other analytic and numerical approaches are discussed based on the present framework.Comment: 16 pages, 9 figures; references updated; to appear in Phys. Rev.

    The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong

    Get PDF
    The physical, chemical and bioreactivity characteristics of fine particulate matter (PM2.5) collected near (<1 km) two landfill sites and downwind urban sites were investigated. The PM2.5 concentrations were significantly higher in winter than summer. Diurnal variations of PM2.5 were recorded at both landfill sites. Soot aggregate particles were identified near the landfill sites, which indicated that combustion pollution due to landfill activities was a significant source. High correlation coefficients (r) implied several inorganic elements and water-soluble inorganic ions (vanadium (V), copper (Cu), chloride (Cl−), nitrate (NO3−), sodium (Na) and potassium (K)) were positively associated with wind flow from the landfill sites. Nevertheless, no significant correlations were also identified between these components against DNA damage. Significant associations were observed between DNA damage and some heavy metals such as cadmium (Cd) and lead (Pb), and total Polycyclic Aromatic Hydrocarbons (PAHs) during the summer. The insignificant associations of DNA damage under increased wind frequency from landfills suggested that the PM2.5 loading from sources such as regional sources was possibly an important contributing factor for DNA damage. This outcome warrants the further development of effective and source-specific landfill management regulations for particulate matter production control to the city
    • …
    corecore