7 research outputs found

    Evaluation of a rapid immunodiagnostic test kit for rabies virus

    No full text
    A rapid immunodiagnostic test kit for rabies virus detection was evaluated using 51 clinical samples and 4 isolates of rabies virus. The quick detection of rabies virus under field conditions may be helpful in determining if post-exposure prophylaxis is needed, thereby avoiding unnecessary treatments, as well as undue economic burden. There are several widely used diagnostic methods for rabies, including fluorescent antibody tests, reverse transcription polymerase chain reaction, and electron microscopy; however, these methods include time-consuming, intricate, and costly procedures. The rapid immunodiagnostic test was able to detect rabies virus in clinical samples, including brain tissue and saliva, in addition to 103.2 50% lethal dose (LD50)/mL cell-adapted rabies virus. The assay was not cross-reactive with non-rabies virus microbes. When the performance of the rapid immunodiagnostic test was compared to a fluorescent antibody test, the rapid immunodiagnostic test had a sensitivity of 91.7% and specificity of 100% (95.8% CI)

    IMECE2005-81651 TOLERANCE ANALYSIS CONSIDERING WELD DISTORTION BY USE OF PREGENERATED DATABASE

    No full text
    ABSTRACT A general and efficient methodology has been developed to analyze dimensional variations of an assembly, taking into account of the weld distortion. Weld distortion is generally probabilistic because of the random nature of welding parameters such as the welding speed, maximum welding temperature, ambient temperature, etc. The methodology is illustrated by a very simple example of two perpendicular plates fillet-welded to each other. Two steps comprise the methodology: establishment of a weld-distortion database, and tolerance analysis using the database. To establish the database, thermo-elasto-plastic finite element analyses are conducted to compute the weld distortion for all combinations of discrete values of major welding parameters. In the second step of tolerance analysis, the weld distortion retrieved from the database is used in addition to the dimensional tolerances of the parts. As a result of such an analysis, sensitivities of the assembly's dimensional variations to the part tolerances and weld distortion are obtained, which can be help improve the dimensional quality of the assembly

    Association of Tim-3/Gal-9 Axis with NLRC4 Inflammasome in Glioma Malignancy: Tim-3/Gal-9 Induce the NLRC4 Inflammasome

    No full text
    Tim-3/Gal-9 and the NLRC4 inflammasome contribute to glioma progression. However, the underlying mechanisms involved are unclear. Here, we observed that Tim-3/Gal-9 expression increased with glioma malignancy and found that Tim-3/Gal-9 regulate NLRC4 inflammasome formation and activation. Tim-3/Gal-9 and NLRC4 inflammasome-related molecule expression levels increased with WHO glioma grade, and this association was correlated with low survival. We investigated NLRC4 inflammasome formation by genetically regulating Tim-3 and its ligand Gal-9. Tim-3/Gal-9 regulation was positively correlated with the NLRC4 inflammasome, NLRC4, and caspase-1 expression. Tim-3/Gal-9 did not trigger IL-1β secretion but were strongly positively correlated with caspase-1 activity as they induced programmed cell death in glioma cells. A protein–protein interaction analysis revealed that the FYN-JAK1-ZNF384 pathways are bridges in NLRC4 inflammasome regulation by Tim-3/Gal-9. The present study showed that Tim-3/Gal-9 are associated with poor prognosis in glioma patients and induce NLRC4 inflammasome formation and activation. We proposed that a Tim-3/Gal-9 blockade could be beneficial in glioma therapy as it would reduce the inflammatory microenvironment by downregulating the NLRC4 inflammasome

    NOX2-Induced High Glycolytic Activity Contributes to the Gain of COL5A1-Mediated Mesenchymal Phenotype in GBM

    No full text
    The alteration of the cellular metabolism is a hallmark of glioma. The high glycolytic phenotype is a critical factor in the pathogenesis of high-grade glioma, including glioblastoma multiforme (GBM). GBM has been stratified into three subtypes as the proneural, mesenchymal, and classical subtypes. High glycolytic activity was found in mesenchymal GBM relative to proneural GBM. NADPH oxidase 2 (NOX2) has been linked to cellular metabolism and epithelial-mesenchymal transition (EMT) in tumors. The role of NOX2 in the regulation of the high glycolytic phenotype and the gain of the mesenchymal subtype in glioma remain unclear. Here, our results show that the levels of NOX2 were elevated in patients with GBM. NOX2 induces hexokinase 2 (HK2)-dependent high glycolytic activity in U87MG glioma cells. High levels of NOX2 are correlated with high levels of HK2 and glucose uptake in patients with GBM relative to benign glioma. Moreover, NOX2 increases the expression of mesenchymal-subtype-related genes, including COL5A1 and FN1 in U87MG glioma cells. High levels of NOX2 are correlated with high levels of COL5A1 and the accumulation of extracellular matrix (ECM) in patients with GBM relative to benign glioma. Furthermore, high levels of HK2 are correlated with high levels of COL5A1 in patients with GBM relative to benign glioma. Our results suggest that NOX2-induced high glycolytic activity contributes to the gain of the COL5A1-mediated mesenchymal phenotype in GBM
    corecore