4,573 research outputs found

    Human fertility after a disaster : a systematic literature review

    Get PDF
    Fertility is a key demographic parameter influenced by disaster. With the growing risk of disasters, interest in the fertility response to a disaster is increasing among the public, policy makers and researchers alike. As yet, a synthesis of the current evidence on how fertility changes after disaster does not exist. We reviewed 50 studies retrieved from a systematic search based on a pre-registered protocol. We found an overall negative impact of disasters on fertility. If any, increases in fertility were mostly linked with weather-related physical disasters. We also identified 13 distinct mechanisms which researchers have considered as underlying the fertility effects of disaster. By contrast to the common belief that disasters are more likely to increase fertility in contexts with already high fertility, we found little evidence to suggest that the total fertility rate of the studied populations was an important predictor of the direction, timing or size of fertility impacts. While this may be because no relationship exists, it may also be due to biases we observed in the literature towards studying high-income countries or high-cost disasters. We summarize the methodological limitations identified from the reviewed studies into six practical recommendations for future research. Our findings inform both the theories behind the fertility effects of disasters and the methods for studying them

    Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum.

    Get PDF
    Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one\u27s own body

    Inter-individual Differences in Tolerance to a Simulated Hemorrhage Challenge During Heat Stress: Cerebrovascular Control

    Get PDF
    A high degree of inter-individual variability exists in heat stress (HS) -induced reductions in orthostatic tolerance relative to normothermia (NT), which may be associated with HS-mediated reductions in cerebral perfusion, and thus mechanisms of cerebrovascular control during hypotensive challenges. This study tested two hypotheses; 1) the magnitude of increase in cerebral autoregulation (CA) would be negatively correlated with the difference in tolerance to graded lower body negative pressure (LBNP) 30 [assessed with a cumulative stress index (CSI)] during HS relative to NT (CSIdiff), and 2) cerebrovascular sensitivity to HS-induced hypocapnia would be positively correlated with CSIdiff. Subjects (N=13) were exposed to LBNP on two occasions (NT and HS) separated by \u3e72h to assess CSI. On a third day, indices of CA were assessed during NT and HS by spectral and transfer function analyses, and cerebrovascular sensitivity to changes in PaCO2 was determined during NT, HS, and HS+LBNP (-20 mm Hg; HSLBNP). Estimates of CA were improved during HS compared to NT (P0.05). Hyperventilation-induced hypocapnia reduced cerebral vascular conductance (CVCi) during HS and HSLBNP relative to NT (P0.05 for all). In summary, HS augments mechanisms of cerebrovascular control to protect against orthostatic challenges; however, individual differences in these responses do not predict tolerance to a simulated hemorrhage when internal temperature is elevated

    Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Get PDF
    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species

    Linear Magnetoelectric Phase in Ultrathin MnPS₃ Probed by Optical Second Harmonic Generation

    Get PDF
    The transition metal thiophosphates MPS₃ (M=Mn, Fe, Ni) are a class of van der Waals stacked insulating antiferromagnets that can be exfoliated down to the ultrathin limit. MnPS₃ is particularly interesting because its Néel ordered state breaks both spatial-inversion and time-reversal symmetries, allowing for a linear magnetoelectric phase that is rare among van der Waals materials. However, it is unknown whether this unique magnetic structure of bulk MnPS₃ remains stable in the ultrathin limit. Using optical second harmonic generation rotational anisotropy, we show that long-range linear magnetoelectric type Néel order in MnPS₃ persists down to at least 5.3 nm thickness. However an unusual mirror symmetry breaking develops in ultrathin samples on SiO₂ substrates that is absent in bulk materials, which is likely related to substrate induced strain

    A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

    Full text link
    The merging neutron star gravitational wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ\gamma-rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ\gamma-ray, X-ray and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical and infrared emission are shown to probe material torn during the merger and subsequently heated by the decay of freshly synthesized rr-process material. The simplest hypothesis that the non-thermal emission is due to a low-luminosity short γ\gamma-ray burst (sGRB) seems to agree with the present data. While low luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.Comment: 9 pages, 5 figures, accepted to ApJ Letter
    • …
    corecore