172 research outputs found

    Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Get PDF
    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system

    Charge Transfer Induced Molecular Hole Doping into Thin Film of Metal-Organic-Frameworks

    Full text link
    Despite the highly porous nature with significantly large surface area, metal organic frameworks (MOFs) can be hardly used in electronic, and optoelectronic devices due to their extremely poor electrical conductivity. Therefore, the study of MOF thin films that require electron transport or conductivity in combination with the everlasting porosity is highly desirable. In the present work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity are synthesized using layer-by-layer and doctor blade coating techniques followed by iodine doping. The as-prepared and doped films are characterized using FE-SEM, EDX, UV/Visible spectroscopy, XPS, current-voltage measurement, photoluminescence spectroscopy, cyclic voltammetry, and incident photon to current efficiency measurements. In addition, the electronic and semiconductor property of the MOF films are characterized using Hall Effect measurement, which reveals that in contrast to the insulator behavior of the as-prepared MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by charge transfer induced hole doping into the frameworks. The observed charge transfer induced hole doping phenomenon is also confirmed by calculating the densities of states of the as-prepared and iodine doped MOFs based on density functional theory. Photoluminescence spectroscopy demonstrate an efficient interfacial charge transfer between TiO2 and iodine doped MOFs, which can be applied to harvest solar radiations.Comment: Main paper (19 pages, 6 figures) and supplementary information (15 pages, 10 figures), accepted in ACS Appl. Materials & Interface

    Ultrafast-Laser Micro-Structuring of LiNi0.8_{0.8}Mn0.1_{0.1}Co0.1_{0.1}O2_2 Cathode for High-Rate Capability of Three-Dimensional Li-ion Batteries

    Get PDF
    Femtosecond ultrafast-laser micro-patterning was employed to prepare a three-dimensional (3D) structure for the tape-casting Ni-rich LiNi0.8_{0.8}Mn0.1_{0.1}Co0.1_{0.1}O2_2 (NMC811) cathode. The influences of laser structuring on the electrochemical performance of NMC811 were investigated. The 3D-NMC811 cathode retained capacities of 77.8% at 2 C of initial capacity at 0.1 C, which was thrice that of 2D-NMC811 with an initial capacity of 27.8%. Cyclic voltammetry (CV) and impedance spectroscopy demonstrated that the 3D electrode improved the Li+^+ ion transportation at the electrode–electrolyte interface, resulting in a higher rate capability. The diffusivity coefficient DLi+_{Li+}, calculated by both CV and electrochemical impedance spectroscopy, revealed that 3D-NMC811 delivered faster Li+^+ ion transportation with higher DLi+_{Li+} than that of 2D-NMC811. The laser ablation of the active material also led to a lower charge–transfer resistance, which represented lower polarization and improved Li+^+ ion diffusivity

    Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene

    Get PDF
    Successful PCR starts with proper priming between an oligonucleotide primer and the template DNA. However, the inevitable risk of mismatched priming cannot be avoided in the currently used primer system, even though considerable time and effort are devoted to primer design and optimization of reaction conditions. Here, we report a novel dual priming oligonucleotide (DPO) which contains two separate priming regions joined by a polydeoxyinosine linker. The linker assumes a bubble-like structure which itself is not involved in priming, but rather delineates the boundary between the two parts of the primer. This structure results in two primer segments with distinct annealing properties: a longer 5′-segment that initiates stable priming, and a short 3′-segment that determines target-specific extension. This DPO-based system is a fundamental tool for blocking extension of non-specifically primed templates, and thereby generates consistently high PCR specificity even under less than optimal PCR conditions. The strength and utility of the DPO system are demonstrated here using multiplex PCR and SNP genotyping PCR

    The Clinical Usefulness of the SD Bioline Influenza Antigen Test® for Detecting the 2009 Influenza A (H1N1) Virus

    Get PDF
    Though the 2009 worldwide influenza A (H1N1) pandemic has been declared to have ended, the influenza virus is expected to continue to circulate from some years as a seasonal influenza. A rapid antigen test (RAT) can aid in rapid diagnosis and allow for early antiviral treatment. We evaluated the clinical usefulness of RAT using SD Bioline Influenza Antigen Test® kit to detect the influenza virus, considering various factors. From August 1, 2009 to October 10, 2009, a total of 938 patients who visited the outpatient clinic at Korea University Guro Hospital with influenza-like illnesses were enrolled in the study. Throat or nasopharyngeal swab specimens were obtained from each of the patients. Using these specimens, we evaluated the influenza detection rate by rapid antigen test based on the real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) method. In comparison with rRT-PCR, the sensitivity and specificity of the RAT were 44.0% and 99.9%, respectively. The cyclic threshold values of RAT negative specimens were higher than RAT positive specimens (30.1±3.1 vs. 28.3±3.9, p=0.031). The sensitivity of the RAT kit was higher in patients who visited clinics within two days of symptom onset (60.4% vs. 11.1%, p=0.026). The results of this study show that the RAT cannot be recommended for general use in all patients with influenza-like illness because of its low sensitivity. The RAT may be used, only in the settings with limited diagnostic resources, for patients who visit a clinic within two days of symptom onset

    Different contribution of extent of myocardial injury to left ventricular systolic and diastolic function in early reperfused acute myocardial infarction

    Get PDF
    BACKGROUND: We sought to investigate the influence of the extent of myocardial injury on left ventricular (LV) systolic and diastolic function in patients after reperfused acute myocardial infarction (AMI). METHODS: Thirty-eight reperfused AMI patients underwent cardiac magnetic resonance (CMR) imaging after percutaneous coronary revascularization. The extent of myocardial edema and scarring were assessed by T2 weighted imaging and late gadolinium enhancement (LGE) imaging, respectively. Within a day of CMR, echocardiography was done. Using 2D speckle tracking analysis, LV longitudinal, circumferential strain, and twist were measured. RESULTS: Extent of LGE were significantly correlated with LV systolic functional indices such as ejection fraction (r��=��-0.57, p��<��0.001), regional wall motion score index (r��=��0.52, p��=��0.001), and global longitudinal strain (r��=��0.56, p��<��0.001). The diastolic functional indices significantly correlated with age (r��=��-0.64, p��<��0.001), LV twist (r��=��-0.39, p��=��0.02), average non-infarcted myocardial circumferential strain (r��=��-0.52, p��=��0.001), and LV end-diastolic wall stress index (r��=��-0.47, p��=��0.003 with e') but not or weakly with extent of LGE. In multivariate analysis, age and non-infarcted myocardial circumferential strain independently correlated with diastolic functional indices rather than extent of injury. CONCLUSIONS: In patients with timely reperfused AMI, not only extent of myocardial injury but also age and non-infarcted myocardial function were more significantly related to LV chamber diastolic function.ope
    corecore