19,907 research outputs found

    Noncontact true temperature measurement, 2

    Get PDF
    A laser pyrometer was developed for acquiring the true temperature of a levitated sample. The reflectivity is measured by first expanding the laser beam to cover the entire cross-sectional surface of the diffuse target. The reflectivity calibration of this system is determined from the surface emissivity of a target with a blackbody cavity. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of the blackbody cavity (emissivity = 1.0) at a known, arbitrary temperature. Since the photosensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. The latest results available from this on-going research indicate that true temperatures thus obtained are in very good quantitative agreement with thermocouple measured temperatures

    Noncontact temperature pattern measuring device

    Get PDF
    Laser pyrometer techniques are utilized to accurately image a true temperature distribution on a given target without touching the target and without knowing the localized emissivity of the target. The pyrometer utilizes a very high definition laser beam and photodetector, both having a very narrow focus. The pyrometer is mounted in a mechanism designed to permit the pyrometer to be aimed and focused at precise localized points on the target surface. The pyrometer is swept over the surface area to be imaged, temperature measurements being taken at each point of focus

    Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach.

    Get PDF
    Locally advanced pancreatic cancer (LAPC) is characterized by poor prognosis and low response durability with standard-of-care chemotherapy or chemoradiotherapy treatment. Stereotactic body radiation therapy (SBRT), which has a shorter treatment course than conventionally fractionated radiotherapy and allows for better integration with systemic therapy, may confer a survival benefit but is limited by gastrointestinal toxicity. Stereotactic MRI-guided adaptive radiation therapy (SMART) has recently gained attention for its potential to increase treatment precision and thus minimize this toxicity through continuous real-time soft-tissue imaging during radiotherapy. The case presented here illustrates the promising outcome of a 69-year-old male patient with LAPC treated with SMART with daily adaptive planning and respiratory-gated technique

    Stereotactic Magnetic Resonance-guided Online Adaptive Radiotherapy for Oligometastatic Breast Cancer: A Case Report.

    Get PDF
    We present a case of durable local control achieved in a patient treated with stereotactic magnetic resonance-guided adaptive radiation therapy (SMART) for an abdominal lymph node in the setting of oligometastatic breast cancer. A 50-year-old woman with a history of triple positive metastatic invasive ductal carcinoma of the left breast, stage IV (T3N2M1), underwent neoadjuvant chemotherapy, mastectomy, adjuvant radiotherapy and maintenance hormonal treatment with HER2 targeted therapies. At 20 months after definitive treatment of her primary, imaging showed an isolated progressive enlargement of lymph nodes between hepatic segment V/IVB and the neck of the pancreas. Radiofrequency ablation was considered, however, this approach was decided not to be optimal due to the proximity to stomach, and pancreatic duct. The patient was treated with SMART for 40 Gray in 5 fractions. Two and a half years later, the patient remains without evidence of disease progression. She experienced Grade 2 acute and late toxicity that was successfully managed with medications. This experience shows that SMART is a feasible and effective treatment to control the abdominal oligometastatic disease for breast cancer

    Proximity Operations and Docking Sensor Development

    Get PDF
    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the brassboard and proto-type NGAVGS units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor

    Stacks and D-Brane Bundles

    Full text link
    In this paper we describe explicitly how the twisted ``bundles'' on a D-brane worldvolume in the presence of a nontrivial B field, can be understood in terms of sheaves on stacks. We also take this opportunity to provide the physics community with a readable introduction to stacks and generalized spaces.Comment: 24 pages, LaTeX; v2: references adde

    Clinical Exacerbations as a Surrogate End Point in Heart Failure Research

    Get PDF
    Background We examined the utility of an index of clinical exacerbations of heart failure (HF) as a surrogate measure of outcome for use in modestly sized clinical trials and observational studies. Methods Electronic records of 189 outpatients with HF in a US Veterans Affairs Medical Center were examined over a 2- to 3-year period. Data collected included patient characteristics, clinical exacerbations of HF, hospitalizations, and deaths. Subsets of patient were also assessed for HF-related level of functioning. Results Episodes of clinical exacerbation could be detected reliably (kappa = .83). An index of episodes (number of episodes divided by the time in years) was associated with lower quality of life, higher functional class, increased rate of HF hospitalization, poorer exercise tolerance, and up to 30% increased risk of mortality across 2 years. Conclusions The index of HF exacerbations is potentially a useful surrogate end point for use in clinical HF research
    • …
    corecore