3,548 research outputs found
Vicarious learning through capturing task‐directed discussions
The vicarious learner group has been developing a multimedia database system to promote and enhance the role of dialogue in learning. A specific interest, and the origin of the projects' collective name, is in the question of whether and how dialogue can be helpfully ‘reused’. What benefits can students gain from dialogue as observers, not just as participants? We describe our initial attempts to generate and capture educationally effective discourse exchanges amongst and between students and tutors. Problems encountered with available CMC discourse formats led to our development of a set of Task Directed Discussions (TDDs). A medium‐sized corpus of discourse exchanges was collected using the TDDs. A selection of nearly two hundred of these TDD exchanges formed the multimedia discourse database to the implemented prototype system, Dissemination. Initial results from a controlled experiment and evaluation of Dissemination are outline
NO adsorption and thermal behavior on Pd surfaces. A detailed comparative study
The adsorption and thermal behavior of NO on `flat¿ Pd(111) and `stepped¿ Pd(112) surfaces has been investigated by temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), and electron stimulated desorption ion angular distribution (ESDIAD) techniques. NO is shown to molecularly adsorb on both Pd(111) and Pd(112) in the temperature range 100¿373 K. NO thermally desorbs predominantly molecularly from Pd(111) near 500 K with an activation energy and pre-exponential factor of desorption which strongly depend on the initial NO surface coverage. In contrast, NO decomposes substantially on Pd(112) upon heating, with relatively large amounts of N2 and N2O desorbing near 500 K, in addition to NO. The fractional amount of NO dissociation on Pd(112) during heating is observed to be a strong function of the initial NO surface coverage. HREELS results indicate that the thermal dissociation of NO on both Pd(111) and Pd(112) occurs upon annealing to 490 K, forming surface-bound O on both surfaces. Evidence for the formation of sub-surface O via NO thermal dissociation is found only on Pd(112), and is verified by dissociative O2 adsorption experiments. Both surface-bound O and sub-surface O dissolve into the Pd bulk upon annealing of both surfaces to 550 K. HREELS and ESDIAD data consistently indicate that NO preferentially adsorbs on the (111) terrace sites of Pd(112) at low coverages, filling the (001) step sites only at high coverage. This result was verified for adsorption temperatures in the range 100¿373 K. In addition, the thermal dissociation of NO on Pd(112) is most prevalent at low coverages, where only terrace sites are occupied by NO. Thus, by direct comparison to NO/Pd(111), this study shows that the presence of steps on the Pd(112) surface enhances the thermal dissociation of NO, but that adsorption at the step sites is not the criterion for this decomposition
Development of a 3D printer using scanning projection stereolithography
We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5cm2 area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels
Determination of the order of phase transitions in Potts model by the graph-weight approach
We examine the order of the phase transition in the Potts model by using the
graph representation for the partition function, which allows treating a
non-integer number of Potts states. The order of transition is determined by
the analysis of the shape of the graph-weight probability distribution. The
approach is illustrated on special cases of the one-dimensional Potts model
with long-range interactions and on its mean-field limit.Comment: 12 pages LaTeX, 2 eps figures; to be published in Physica
Formation of oligopeptides in high yield under simple programmable conditions
Many high-yielding reactions for forming peptide bonds have been developed but these are complex, requiring activated amino-acid precursors and heterogeneous supports. Herein we demonstrate the programmable one-pot dehydration–hydration condensation of amino acids forming oligopeptide chains in around 50% yield. A digital recursive reactor system was developed to investigate this process, performing these reactions with control over parameters such as temperature, number of cycles, cycle duration, initial monomer concentration and initial pH. Glycine oligopeptides up to 20 amino acids long were formed with very high monomer-to-oligomer conversion, and the majority of these products comprised three amino acid residues or more. Having established the formation of glycine homo-oligopeptides, we then demonstrated the co-condensation of glycine with eight other amino acids (Ala, Asp, Glu, His, Lys, Pro, Thr and Val), incorporating a range of side-chain functionality
Novel Synthesis and High Pressure Behavior of Na0.3CoO2 x 1.3 H2O and Related Phases
We have prepared powder samples of NaxCoO2 x yH2O using a new synthesis
route. Superconductivity was observed in Na0.3CoO2 x 1.3H2O between 4 and 5K as
indicated by the magnetic susceptibility. The bulk compressibilities of
Na0.3CoO2 x 1.3H2O, Na0.3CoO2 x 0.6H2O and Na0.3CoO2 were determined using a
diamond anvil cell and synchrotron powder diffraction. Chemical changes
occurring under pressure when using different pressure transmitting media are
discussed and further transport measurements are advocated.Comment: 7 pages, 4 figures, PRrapid submitte
An Effective Clustering Approach to Stock Market Prediction
In this paper, we propose an effective clustering method, HRK (Hierarchical agglomerative and Recursive K-means clustering), to predict the short-term stock price movements after the release of financial reports. The proposed method consists of three phases. First, we convert each financial report into a feature vector and use the hierarchical agglomerative clustering method to divide the converted feature vectors into clusters. Second, for each cluster, we recursively apply the K-means clustering method to partition each cluster into sub-clusters so that most feature vectors in each sub-cluster belong to the same class. Then, for each sub-cluster, we choose its centroid as the representative feature vector. Finally, we employ the representative feature vectors to predict the stock price movements. The experimental results show the proposed method outperforms SVM in terms of accuracy and average profits
Temperature-dependent Raman spectroscopy in BaRuO systems
We investigated the temperature-dependence of the Raman spectra of a
nine-layer BaRuO single crystal and a four-layer BaRuO epitaxial film,
which show pseudogap formations in their metallic states. From the polarized
and depolarized spectra, the observed phonon modes are assigned properly
according to the predictions of group theory analysis. In both compounds, with
decreasing temperature, while modes show a strong hardening, (or
) modes experience a softening or no significant shift. Their different
temperature-dependent behaviors could be related to a direct Ru metal-bonding
through the face-sharing of RuO. It is also observed that another
mode of the oxygen participating in the face-sharing becomes split at low
temperatures in the four layer BaRuO. And, the temperature-dependence of
the Raman continua between 250 600 cm is strongly correlated to
the square of the plasma frequency. Our observations imply that there should be
a structural instability in the face-shared structure, which could be closely
related to the pseudogap formation of BaRuO systems.Comment: 8 pages, 6 figures. to be published in Phys. Rev.
A Farewell to Liouvillians
We examine the Liouvillian approach to the quantum Hall plateau transition,
as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B {\bf 62},
2008 (2000)] and developed by Moore, Sinova and Zee [Phys. Rev. Lett. {\bf 87},
046801 (2001)]. We show that, despite appearances to the contrary, the
Liouvillian approach is not specific to the quantum mechanics of particles
moving in a single Landau level: we formulate it for a general disordered
single-particle Hamiltonian. We next examine the relationship between
Liouvillian perturbation theory and conventional calculations of
disorder-averaged products of Green functions and show that each term in
Liouvillian perturbation theory corresponds to a specific contribution to the
two-particle Green function. As a consequence, any Liouvillian approximation
scheme may be re-expressed in the language of Green functions. We illustrate
these ideas by applying Liouvillian methods, including their extension to Liouvillian flavors, to random matrix ensembles, using numerical
calculations for small integer and an analytic analysis for large .
We find that behavior at is different in qualitative ways from that
at . In particular, the limit expressed using Green
functions generates a pathological approximation, in which two-particle
correlation functions fail to factorize correctly at large separations of their
energy, and exhibit spurious singularities inside the band of random matrix
energy levels. We also consider the large treatment of the quantum Hall
plateau transition, showing that the same undesirable features are present
there, too
- …