10,961 research outputs found
Constraint on teleportation over multipartite pure states
We first define a quantity exhibiting the usefulness of bipartite quantum
states for teleportation, called the quantum teleportation capability, and then
investigate its restricted shareability in multi-party quantum systems. In this
work, we verify that the quantum teleportation capability has a monogamous
property in its shareability for arbitrary three-qutrit pure states by
employing the monogamy inequality in terms of the negativity.Comment: 4 pages, 1 figur
Optical properties of pyrochlore oxide
We present optical conductivity spectra for
single crystal at different temperatures. Among reported pyrochlore ruthenates,
this compound exhibits metallic behavior in a wide temperature range and has
the least resistivity. At low frequencies, the optical spectra show typical
Drude responses, but with a knee feature around 1000 \cm. Above 20000 \cm, a
broad absorption feature is observed. Our analysis suggests that the low
frequency responses can be understood from two Drude components arising from
the partially filled Ru bands with different plasma frequencies and
scattering rates. The high frequency broad absorption may be contributed by two
interband transitions: from occupied Ru states to empty bands
and from the fully filled O 2p bands to unoccupied Ru states.Comment: 4 pages, 6 figure
Are Muslims the New Catholics? Europe’s Headscarf Laws in Comparative Historical Perspective
In this paper a biologically-inspired model for partly occluded patterns is proposed. The model is based on the hypothesis that in human visual system occluding patterns play a key role in recognition as well as in reconstructing internal representation for a pattern’s occluding parts. The proposed model is realized with a bidirectional hierarchical neural network. In this network top-down cues, generated by direct connections from the lower to higher levels of hierarchy, interact with the bottom-up information, generated from the un-occluded parts, to recognize occluded patterns. Moreover, positional cues of the occluded as well as occluding patterns, that are computed separately but in the same network, modulate the top-down and bottom-up processing to reconstruct the occluded patterns. Simulation results support the presented hypothesis as well as effectiveness of the model in providing a solution to recognition of occluded patterns. The behavior of the model is in accordance to the known human behavior on the occluded patterns
Long-term starin monitoring data of jacket-type offshore structure for tidal current power generation under severe tidal current environments
Structural strain responses of the jacket-type Uldolmok tidal current power plant structure under severe\ud
tidal environments were analyzed using long-term measurement data from construction to normal operation. From the\ud
measured data during construction, it was found that there were significant changes in strain responses at the steps of\ud
jacket lifting, weight-block loading, pile ejection and insertion. Strains due to permanent and tidal current loads were\ud
analyzed during removal work on one among six jacket legs, and it was found that the strains due to permanent load\ud
were much significantly changed after removal of on jacket leg. From the measurement data during normal operation, it\ud
was observed that strain responses were obviously fluctuated with M2 and M4 tidal periods and also with relatively\ud
short period of about 11 min due to the peculiar tidal characteristics in the Uldolmok strait
Is Vacuum Decay Significant in Ekpyrotic and Cyclic Models?
It has recently been argued that bubble nucleation in ekpyrotic and cyclic
cosmological scenarios can lead to unacceptable inhomogeneities unless certain
constraints are satisfied. In this paper we show that this is not the case. We
find that bubble nucleation is completely negligible in realistic models.Comment: 3 pages, 1 figure, minor revision
Non-Fermi liquid behavior and scaling of low frequency suppression in optical conductivity spectra of CaRuO
Optical conductivity spectra of paramagnetic CaRuO are
investigated at various temperatures. At T=10 K, it shows a non-Fermi liquid
behavior of , similar to the case
of a ferromagnet SrRuO. As the temperature () is increased, on the other
hand, in the low frequency region is progressively
suppressed, deviating from the 1/{\omega}^{\frac 12%}-dependence.
Interestingly, the suppression of is found to scale with
at all temperatures. The origin of the scaling
behavior coupled with the non-Fermi liquid behavior is discussed.Comment: 4 pages, 3 figure
CPsuperH2.3: an Updated Tool for Phenomenology in the MSSM with Explicit CP Violation
We describe the Fortran code CPsuperH2.3, which incorporates the following
updates compared with its predecessor CPsuperH2.0. It implements improved
calculations of the Higgs-boson masses and mixing including stau contributions
and finite threshold effects on the tau-lepton Yukawa coupling. It incorporates
the LEP limits on the processes e^+ e^- to H_i Z, H_i H_j and the CMS limits on
H_i to tau^+ tau^- obtained from 4.6/fb of data at a centre-of-mass energy of 7
TeV. It also includes the decay mode H_i to Z gamma and the Schiff-moment
contributions to the electric dipole moments of Mercury and Radium225, with
several calculational options for the case of Mercury. These additions make
CPsuperH2.3 a suitable tool for analyzing possible CP-violating effects in the
MSSM in the era of the LHC and a new generation of EDM experimentsComment: 31 pages, 10 eps figures, 7 tables; H to Z gamma and SM BRs included;
To appear in CPC; Typos in Eq.(A.2) corrected;The program may be obtained
from http://www.hep.man.ac.uk/u/jslee/CPsuperH.html, or by contacting the
first author at [email protected]; A comment added after Eq.(15) and a typo in
Eq.(A.4) correcte
Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations
We study the distributions of traveling length l and minimal traveling time t
through two-dimensional percolation porous media characterized by long-range
spatial correlations. We model the dynamics of fluid displacement by the
convective movement of tracer particles driven by a pressure difference between
two fixed sites (''wells'') separated by Euclidean distance r. For strongly
correlated pore networks at criticality, we find that the probability
distribution functions P(l) and P(t) follow the same scaling Ansatz originally
proposed for the uncorrelated case, but with quite different scaling exponents.
We relate these changes in dynamical behavior to the main morphological
difference between correlated and uncorrelated clusters, namely, the
compactness of their backbones. Our simulations reveal that the dynamical
scaling exponents for correlated geometries take values intermediate between
the uncorrelated and homogeneous limiting cases
Experimental Control and Characterization of Autophagy in Drosophila
Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy
Hole spin polarization in GaAlAs:Mn structures
A self-consistent calculation of the electronic properties of GaAlAs:Mn
magnetic semiconductor quantum well structures is performed including the
Hartree term and the sp-d exchange interaction with the Mn magnetic moments.
The spin polarization density is obtained for several structure configurations.
Available experimental results are compared with theory.Comment: 4 page
- …
