3,383 research outputs found

    Kinetic rate constants for the formation of trihalomethanes in chlorinated ammonia containing ground water

    Get PDF
    It is well established that trihalomethanes, in drinking water are byproducts of chlorine disinfection. A method to predict the distribution and concentration of trihalornethanes is important because of health risks associated with chronic exposure to these compounds. A literature review has provided information on the chemistry of water chlorination and a data base developed in the laboratory has provided data on trihalomethane formation under various conditions. These data were used to generate rate constants for the formation of trihalomethanes. Trihalornethane formation kinetics appeared to be influenced primarily by the presence of ammonia. The influence of pH is not as profound as indicated in literature. The rate of formation is low at and before breakpoint, whereas it increases after breakpoint

    The Fine Line Between Normal and Starburst Galaxies

    Full text link
    Recent literature suggests that there are two modes through which galaxies grow their stellar mass - a normal mode characterized by quasi-steady star formation, and a highly efficient starburst mode possibly triggered by stochastic events such as galaxy mergers. While these differences are established for extreme cases, the population of galaxies in-between these two regimes is poorly studied and it is not clear where the transition between these two modes of star formation occurs. We utilize ALMA observations of the CO J=3-2 line luminosity in a sample of 20 infrared luminous galaxies that lie in the intermediate range between normal and starburst galaxies at z ~ 0.25-0.6 in the COSMOS field to examine the gas content and star formation efficiency of these galaxies. We compare these quantities to the galaxies' deviation from the well-studied "main sequence" correlation between star formation rate and stellar mass (MS) and find that at log(SFR/SFRMSSFR/SFR_{MS}) < 0.6, a galaxy's distance to the main sequence is mostly driven by increased gas content, and not a more efficient star formation process.Comment: 21 pages, 10 figure

    Compendium-Wide Analysis of Pseudomonas aeruginosa Core and Accessory Genes Reveals Transcriptional Patterns across Strains PAO1 and PA14.

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen that causes difficult-to-treat infections. Two well-studied divergent P. aeruginosa strain types, PAO1 and PA14, have significant genomic heterogeneity, including diverse accessory genes present in only some strains. Genome content comparisons find core genes that are conserved across both PAO1 and PA14 strains and accessory genes that are present in only a subset of PAO1 and PA14 strains. Here, we use recently assembled transcriptome compendia of publicly available P. aeruginosa RNA sequencing (RNA-seq) samples to create two smaller compendia consisting of only strain PAO1 or strain PA14 samples with each aligned to their cognate reference genome. We confirmed strain annotations and identified other samples for inclusion by assessing each sample\u27s median expression of PAO1-only or PA14-only accessory genes. We then compared the patterns of core gene expression in each strain. To do so, we developed a method by which we analyzed genes in terms of which genes showed similar expression patterns across strain types. We found that some core genes had consistent correlated expression patterns across both compendia, while others were less stable in an interstrain comparison. For each accessory gene, we also determined core genes with correlated expression patterns. We found that stable core genes had fewer coexpressed neighbors that were accessory genes. Overall, this approach for analyzing expression patterns across strain types can be extended to other groups of genes, like phage genes, or applied for analyzing patterns beyond groups of strains, such as samples with different traits, to reveal a deeper understanding of regulation

    The Evolution of the Galaxy Stellar Mass Function at z= 4-8: A Steepening Low-mass-end Slope with Increasing Redshift

    Get PDF
    We present galaxy stellar mass functions (GSMFs) at z=z= 4-8 from a rest-frame ultraviolet (UV) selected sample of \sim4500 galaxies, found via photometric redshifts over an area of \sim280 arcmin2^2 in the CANDELS/GOODS fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data yet-to-date and the relatively large volume allow us to place a better constraint at both the low- and high-mass ends of the GSMFs compared to previous space-based studies from pre-CANDELS observations. Supplemented by a stacking analysis, we find a linear correlation between the rest-frame UV absolute magnitude at 1500 \AA\ (MUVM_{\rm UV}) and logarithmic stellar mass (logM\log M_*) that holds for galaxies with log(M/M)10\log(M_*/M_{\odot}) \lesssim 10. We use simulations to validate our method of measuring the slope of the logM\log M_*-MUVM_{\rm UV} relation, finding that the bias is minimized with a hybrid technique combining photometry of individual bright galaxies with stacked photometry for faint galaxies. The resultant measured slopes do not significantly evolve over z=z= 4-8, while the normalization of the trend exhibits a weak evolution toward lower masses at higher redshift. We combine the logM\log M_*-MUVM_{\rm UV} distribution with observed rest-frame UV luminosity functions at each redshift to derive the GSMFs, finding that the low-mass-end slope becomes steeper with increasing redshift from α=1.550.07+0.08\alpha=-1.55^{+0.08}_{-0.07} at z=4z=4 to α=2.250.35+0.72\alpha=-2.25^{+0.72}_{-0.35} at z=8z=8. The inferred stellar mass density, when integrated over M=108M_*=10^8-1013M10^{13} M_{\odot}, increases by a factor of 102+3010^{+30}_{-2} between z=7z=7 and z=4z=4 and is in good agreement with the time integral of the cosmic star formation rate density.Comment: 27 pages, 17 figures, ApJ, in pres

    ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1<z<4

    Get PDF
    We investigate the properties of galaxies as they shut off star formation over the 4 billion years surrounding peak cosmic star formation. To do this we categorize 7000\sim7000 galaxies from 1<z<41<z<4 into 9090 groups based on the shape of their spectral energy distributions (SEDs) and build composite SEDs with R50R\sim 50 resolution. These composite SEDs show a variety of spectral shapes and also show trends in parameters such as color, mass, star formation rate, and emission line equivalent width. Using emission line equivalent widths and strength of the 4000\AA\ break, D(4000)D(4000), we categorize the composite SEDs into five classes: extreme emission line, star-forming, transitioning, post-starburst, and quiescent galaxies. The transitioning population of galaxies show modest Hα\alpha emission (EWREST40EW_{\rm REST}\sim40\AA) compared to more typical star-forming composite SEDs at log10(M/M)10.5\log_{10}(M/M_\odot)\sim10.5 (EWREST80EW_{\rm REST}\sim80\AA). Together with their smaller sizes (3 kpc vs. 4 kpc) and higher S\'ersic indices (2.7 vs. 1.5), this indicates that morphological changes initiate before the cessation of star formation. The transitional group shows a strong increase of over one dex in number density from z3z\sim3 to z1z\sim1, similar to the growth in the quiescent population, while post-starburst galaxies become rarer at z1.5z\lesssim1.5. We calculate average quenching timescales of 1.6 Gyr at z1.5z\sim1.5 and 0.9 Gyr at z2.5z\sim2.5 and conclude that a fast quenching mechanism producing post-starbursts dominated the quenching of galaxies at early times, while a slower process has become more common since z2z\sim2.Comment: Accepted for publication in The Astrophysical Journa

    A Turnover in the Galaxy Main Sequence of Star Formation at M1010MM_{*} \sim 10^{10} M_{\odot} for Redshifts z<1.3z < 1.3

    Full text link
    The relationship between galaxy star formation rates (SFR) and stellar masses (MM_\ast) is re-examined using a mass-selected sample of \sim62,000 star-forming galaxies at z1.3z \le 1.3 in the COSMOS 2-deg2^2 field. Using new far-infrared photometry from HerschelHerschel-PACS and SPIRE and SpitzerSpitzer-MIPS 24 μ\mum, along with derived infrared luminosities from the NRK method based on galaxies' locations in the restframe color-color diagram (NUVr)(NUV - r) vs. (rK)(r - K), we are able to more accurately determine total SFRs for our complete sample. At all redshifts, the relationship between median SFRSFR and MM_\ast follows a power-law at low stellar masses, and flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and characterizes the low mass power-law slope, turnover mass, and overall scaling. The turnover in the main sequence occurs at a characteristic mass of about M01010MM_{0} \sim 10^{10} M_{\odot} at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling rises in SFR as a function of (1+z)4.12±0.10(1+z)^{4.12 \pm 0.10}. A broken power-law fit below and above the turnover mass gives relationships of SFRM0.88±0.06SFR \propto M_{*}^{0.88 \pm 0.06} below the turnover mass and SFRM0.27±0.04SFR \propto M_{*}^{0.27 \pm 0.04} above the turnover mass. Galaxies more massive than M1010 MM_\ast \gtrsim 10^{10}\ M_{\rm \odot} have on average, a much lower specific star formation rate (sSFR) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.Comment: 16 pages, 7 figures. Accepted for publication in Ap

    Transmission of antibiotic resistance at the wildlife-livestock interface

    Get PDF
    Antibiotic-resistant microorganisms (ARMs) are widespread in natural environments, animals (wildlife and livestock), and humans, which has reduced our capacity to control life threatening infectious disease. Yet, little is known about their transmission pathways, especially at the wildlife-livestock interface. This study investigated the potential transmission of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by comparing gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans), cattle (Bos taurus), and environmental microbiota. Unexpectedly, wild animals harbored more abundant ARMs and ARGs compared to grazing cattle. Gut microbiota of cattle was significantly more similar to that of feral swine captured within the cattle grazing area where the home range of both species overlapped substantially. In addition, ARMs against medically important antibiotics were more prevalent in wildlife than grazing cattle, suggesting that wildlife could be a source of ARMs colonization in livestock

    Universal corrections to the Fermi-liquid theory

    Full text link
    We show that the singularities in the dynamical bosonic response functions of a generic 2D Fermi liquid give rise to universal, non-analytic corrections to the Fermi-liquid theory. These corrections yield a T2T^2 term in the specific heat, TT terms in the effective mass and the uniform spin susceptibility χs(Q=0,T)\chi_s (Q=0,T), and Q|Q| term in χs(Q,T=0)\chi_s (Q,T=0). The existence of these terms has been the subject of recent controversy, which is resolved in this paper. We present exact expressions for all non-analytic terms to second order in a generic interaction U(q)U(q) and show that only U(0) and U(2pF)U(2p_F) matter.Comment: references added, a typo correcte
    corecore