92 research outputs found
Tiling of the five-fold surface of Al(70)Pd(21)Mn(9)
The nature of the five-fold surface of Al(70)Pd(21)Mn(9) has been
investigated using scanning tunneling microscopy. From high resolution images
of the terraces, a tiling of the surface has been constructed using pentagonal
prototiles. This tiling matches the bulk model of Boudard et. al. (J. Phys.:
Cond. Matter 4, 10149, (1992)), which allows us to elucidate the atomic nature
of the surface. Furthermore, it is consistent with a Penrose tiling T^*((P1)r)
obtained from the geometric model based on the three-dimensional tiling
T^*(2F). The results provide direct confirmation that the five-fold surface of
i-Al-Pd-Mn is a termination of the bulk structure.Comment: 4 pages, 4 figure
A maximum density rule for surfaces of quasicrystals
A rule due to Bravais of wide validity for crystals is that their surfaces
correspond to the densest planes of atoms in the bulk of the material.
Comparing a theoretical model of i-AlPdMn with experimental results, we find
that this correspondence breaks down and that surfaces parallel to the densest
planes in the bulk are not the most stable, i.e. they are not so-called bulk
terminations. The correspondence can be restored by recognizing that there is a
contribution to the surface not just from one geometrical plane but from a
layer of stacked atoms, possibly containing more than one plane. We find that
not only does the stability of high-symmetry surfaces match the density of the
corresponding layer-like bulk terminations but the exact spacings between
surface terraces and their degree of pittedness may be determined by a simple
analysis of the density of layers predicted by the bulk geometric model.Comment: 8 pages of ps-file, 3 Figs (jpg
Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer
We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn
quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral
Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by
x-ray photoelectron diffraction, low-energy electron diffraction and electron
backscatter diffraction. This overlayer is also characterized by a reduced
density of states near the Fermi edge as expected for quasicrystals. This is
the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn
is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001
Recommended from our members
The atomic structure of low-index surfaces of the intermetallic compound InPd
The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In
segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with
a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron
microscopy. Results from both individual grains and “global” measurements are interpreted based on
comparison to our single crystals findings, DFT calculations and previous literature
Atomic structure of different surface terminations of polycrystalline ZnPd
The intermetallic compound ZnPd has been found to have desirable characteristics as a catalyst for the steam reforming of methanol. The understanding of the surface structure of ZnPd is important to optimize its catalytic behavior. However, due to the lack of bulk single-crystal samples and the complexity of characterizing surface properties in the available polycrystalline samples using common experimental techniques, all previous surface science studies of this compound have been performed on surface alloy samples formed through thin-film deposition. In this study, we present findings on the chemical and atomic structure of the surfaces of bulk polycrystalline ZnPd studied by a variety of complementary experimental techniques, including scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), low energy electron microscopy (LEEM), photoemission electron microscopy (PEEM), and microspot low-energy electron diffraction (μ-LEED). These experimental techniques, combined with density functional theory (DFT)-based thermodynamic calculations of surface free energy and detachment kinetics at the step edges, confirm that surfaces terminated by atomic layers composed of both Zn and Pd atoms are more stable than those terminated by only Zn or Pd layers. DFT calculations also demonstrate that the primary contribution to the tunneling current arises from Pd atoms, in agreement with the STM results. The formation of intermetallics at surfaces may contribute to the superior catalyst properties of ZnPd over Zn or Pd elemental counterparts.
Published by the American Physical Society
2024
</jats:sec
Soil Moisture and Permittivity Estimation
The soil moisture and permittivity estimation is vital for the success of the variable rate approaches in the field of the decision agriculture. In this chapter, the development of a novel permittivity estimation and soil moisture sensing approach is presented. The empirical setup and experimental methodology for the power delay measurements used in model are introduced. Moreover, the performance analysis is explained that includes the model validation and error analysis. The transfer functions are reported as well for soil moisture and permittivity estimation. Furthermore, the potential applications of the developed approach in different disciplines are also examined
- …