16 research outputs found

    COLOMBOS v2.0 : an ever expanding collection of bacterial expression compendia

    Get PDF
    The COLOMBOS database (http://www.colombos.net) features comprehensive organism-specific cross-platform gene expression compendia of several bacterial model organisms and is supported by a fully interactive web portal and an extensive web API. COLOMBOS was originally published in PLoS One, and COLOMBOS v2.0 includes both an update of the expression data, by expanding the previously available compendia and by adding compendia for several new species, and an update of the surrounding functionality, with improved search and visualization options and novel tools for programmatic access to the database. The scope of the database has also been extended to incorporate RNA-seq data in our compendia by a dedicated analysis pipeline. We demonstrate the validity and robustness of this approach by comparing the same RNA samples measured in parallel using both microarrays and RNA-seq. As far as we know, COLOMBOS currently hosts the largest homogenized gene expression compendia available for seven bacterial model organisms

    COLOMBOS v3.0: leveraging gene expression compendia for cross-species analyses

    Get PDF
    open13siCOLOMBOS is a database that integrates publicly available transcriptomics data for several prokaryotic model organisms. Compared to the previous version it has more than doubled in size, both in terms of species and data available. The manually curated condition annotation has been overhauled as well, giving more complete information about samples' experimental conditions and their differences. Functionality-wise cross-species analyses now enable users to analyse expression data for all species simultaneously, and identify candidate genes with evolutionary conserved expression behaviour. All the expression-based query tools have undergone a substantial improvement, overcoming the limit of enforced co-expression data retrieval and instead enabling the return of more complex patterns of expression behaviour. COLOMBOS is freely available through a web application at http://colombos.net/. The complete database is also accessible via REST API or downloadable as tab-delimited text files.openMoretto, Marco; Sonego, Paolo; Dierckxsens, Nicolas; Brilli, Matteo; Bianco, Luca; Ledezma-Tejeida, Daniela; Gama-Castro, Socorro; Galardini, Marco; Romualdi, Chiara; Laukens, Kris; Collado-Vides, Julio; Meysman, Pieter; Engelen, KristofMoretto, Marco; Sonego, Paolo; Dierckxsens, Nicolas; Brilli, Matteo; Bianco, Luca; Ledezma Tejeida, Daniela; Gama Castro, Socorro; Galardini, Marco; Romualdi, Chiara; Laukens, Kris; Collado Vides, Julio; Meysman, Pieter; Engelen, Kristo

    COLOMBOS v3.0 : leveraging gene expression compendia for cross-species analyses

    Get PDF
    COLOMBOS is a database that integrates publicly available transcriptomics data for several prokaryotic model organisms. Compared to the previous version it has more than doubled in size, both in terms of species and data available. The manually curated condition annotation has been overhauled as well, giving more complete information about samples' experimental conditions and their differences. Functionality-wise cross-species analyses now enable users to analyse expression data for all species simultaneously, and identify candidate genes with evolutionary conserved expression behaviour. All the expression-based query tools have undergone a substantial improvement, overcoming the limit of enforced co-expression data retrieval and instead enabling the return of more complex patterns of expression behaviour. COLOMBOS is freely available through a web application at http://colombos.net/. The complete database is also accessible via REST API or downloadable as tab-delimited text files

    Genome-Wide Mapping of Transcriptional Regulation and Metabolism Describes Information-Processing Units in Escherichia coli

    No full text
    In the face of changes in their environment, bacteria adjust gene expression levels and produce appropriate responses. The individual layers of this process have been widely studied: the transcriptional regulatory network describes the regulatory interactions that produce changes in the metabolic network, both of which are coordinated by the signaling network, but the interplay between them has never been described in a systematic fashion. Here, we formalize the process of detection and processing of environmental information mediated by individual transcription factors (TFs), utilizing a concept termed genetic sensory response units (GENSOR units), which are composed of four components: (1) a signal, (2) signal transduction, (3) genetic switch, and (4) a response. We used experimentally validated data sets from two databases to assemble a GENSOR unit for each of the 189 local TFs of Escherichia coli K-12 contained in the RegulonDB database. Further analysis suggested that feedback is a common occurrence in signal processing, and there is a gradient of functional complexity in the response mediated by each TF, as opposed to a one regulator/one pathway rule. Finally, we provide examples of other GENSOR unit applications, such as hypothesis generation, detailed description of cellular decision making, and elucidation of indirect regulatory mechanisms

    Metabolism as a signal generator in bacteria

    No full text
    Bacteria constantly monitor their environment to adapt their inner makeup. Beyond providing chemical sustenance, metabolism provides most of the feedback on the cellular environment via metabolite binding to regulatory proteins or mRNA. Although first metabolite-protein interactions were discovered more than 60 years ago, identification of new interactions is still technically challenging and time-consuming. Here, we compiled and quantified the current knowledge on metabolite-protein interactions and review recent advances in the identification of interactions and in understanding how metabolites act as signals to transcription factors, two-component systems, protein kinases, and riboswitches. New systematic methods of metabolite-protein identification and omics integration will accelerate the pace of discovery, a remaining challenge is understanding of functionality and the coordination of local and global metabolic signals across different regulatory layers

    Limits to a classic paradigm: most transcription factors in E. coli regulate genes involved in multiple biological processes

    No full text
    Transcription factors (TFs) are important drivers of cellular decision-making. When bacteria encounter a change in the environment, TFs alter the expression of a defined set of genes in order to adequately respond. It is commonly assumed that genes regulated by the same TF are involved in the same biological process. Examples of this are methods that rely on coregulation to infer function of not-yet-annotated genes. We have previously shown that only 21% of TFs involved in metabolism regulate functionally homogeneous genes, based on the proximity of the gene products’ catalyzed reactions in the metabolic network. Here, we provide more evidence to support the claim that a 1-TF/1-process relationship is not a general property. We show that the observed functional heterogeneity of regulons is not a result of the quality of the annotation of regulatory interactions, nor the absence of protein–metabolite interactions, and that it is also present when function is defined by Gene Ontology terms. Furthermore, the observed functional heterogeneity is different from the one expected by chance, supporting the notion that it is a biological property. To further explore the relationship between transcriptional regulation and metabolism, we analyzed five other types of regulatory groups and identified complex regulons (i.e. genes regulated by the same combination of TFs) as the most functionally homogeneous, and this is supported by coexpression data. Whether higher levels of related functions exist beyond metabolism and current functional annotations remains an open question.ISSN:1362-4962ISSN:0301-561

    Metabolic cross-feeding structures the assembly of polysaccharide degrading communities

    No full text
    Metabolic processes that fuel the growth of heterotrophic microbial communities are initiated by specialized biopolymer degraders that decompose complex forms of organic matter. It is unclear, however, to what extent degraders structure the downstream assembly of the community that follows polymer breakdown. Investigating a model marine microbial community that degrades chitin, we show that chitinases secreted by different degraders produce oligomers of specific chain lengths that not only select for specialized consumers but also influence the metabolites secreted by these consumers into a shared resource pool. Each species participating in the breakdown cascade exhibits unique hierarchical preferences for substrates, which underlies the sequential colonization of metabolically distinct groups as resource availability changes over time. By identifying the metabolic underpinnings of microbial community assembly, we reveal a hierarchical cross-feeding structure that allows biopolymer degraders to shape the dynamics of community assembly.ISSN:2375-254

    COLOMBOS: an ever expanding collection of bacterial expression compendia.

    No full text
    COLOMBOS is an publically available access portal to comprehensive organism-specific cross-platform expression compendia for bacterial organisms. It provides a suite of tools for exploring, analyzing, and visualizing the data within these compendia. The expression compendia themselves are built based on a propriety methodology that is unique in directly combining the data from different technological platforms. COLOMBOS also incorporate extensive annotations for both genes and experimental conditions; these heterogeneous data are functionally integrated in the analysis tools to interactively browse and query the compendia not only for specific genes or experiments, but also metabolic pathways, transcriptional regulation mechanisms, experimental conditions, biological processes, etc. Several improvements have been made. Content wise, we have invested in the development of a compendia creation and management system that has enabled us to greatly expand existing compendia (Escherichia coli, Bacillus subtilis, and Salmonella Typhimurium) as well as add compendia for other species. Additionally, the current version supports the inclusion of RNAseq data. Functionally, we have revamped the interface with new interactive visualization and analysis tools, a bicluster tree algortihm for discovering complex coexpression patterns around a set of query genes, and inclusion of noise models for measurement errors, enabling analysis of differential expression with measures of statistical significance. This work is relevant to a large community of microbiologists by facilitating the use of publicly available genome-wide expression data to support their research, as well as providing a useful resource for top-down systems biology application

    Sensory systems and transcriptional regulation in escherichia coli

    No full text
    In free-living bacteria, the ability to regulate gene expression is at the core of adapting and interacting with the environment. For these systems to have a logic, a signal must trigger a genetic change that helps the cell to deal with what implies its presence in the environment; briefly, the response is expected to include a feedback to the signal. Thus, it makes sense to think of genetic sensory mechanisms of gene regulation. Escherichia coli K-12 is the bacterium model for which the largest number of regulatory systems and its sensing capabilities have been studied in detail at the molecular level. In this special issue focused on biomolecular sensing systems, we offer an overview of the transcriptional regulatory corpus of knowledge for E. coli that has been gathered in our database, RegulonDB, from the perspective of sensing regulatory systems. Thus, we start with the beginning of the information flux, which is the signal's chemical or physical elements detected by the cell as changes in the environment; these signals are internally transduced to transcription factors and alter their conformation. Signals transduced to effectors bind allosterically to transcription factors, and this defines the dominant sensing mechanism in E. coli. We offer an updated list of the repertoire of known allosteric effectors, as well as a list of the currently known different mechanisms of this sensing capability. Our previous definition of elementary genetic sensory-response units, GENSOR units for short, that integrate signals, transport, gene regulation, and the biochemical response of the regulated gene products of a given transcriptional factor fit perfectly with the purpose of this overview. We summarize the functional heterogeneity of their response, based on our updated collection of GENSORs, and we use them to identify the expected feedback as part of their response. Finally, we address the question of multiple sensing in the regulatory network of E. coli. This overview introduces the architecture of sensing and regulation of native components in E.coli K-12, which might be a source of inspiration to bioengineering applications.Funding for this work came from Universidad Nacional AutĂłnoma de MĂ©xico (UNAM) and by NIGMS-NIH grant numbers 5RO1GM131643 and 2R01GM077678. Funding for open access publication fees comes from NIGMS-NIH grant 5RO1GM131643. We acknowledge funding from Universidad Nacional AutĂłnoma de MĂ©xico (UNAM) and by NIGMS-NIH grant numbers 5RO1GM131643 and 2R01GM07767

    COLOMBOS v2.0: an ever expanding collection of bacterial expression compendia

    Get PDF
    The COLOMBOS database (http://www.colombos.net) features comprehensive organism-specific cross-platform gene expression compendia of several bacterial model organisms and is supported by a fully interactive web portal and an extensive web API. COLOMBOS was originally published in PLoS One, and COLOMBOS v2.0 includes both an update of the expression data, by expanding the previously available compendia and by adding compendia for several new species, and an update of the surrounding functionality, with improved search and visualization options and novel tools for programmatic access to the database. The scope of the database has also been extended to incorporate RNA-seq data in our compendia by a dedicated analysis pipeline. We demonstrate the validity and robustness of this approach by comparing the same RNA samples measured in parallel using both microarrays and RNA-seq. As far as we know, COLOMBOS currently hosts the largest homogenized gene expression compendia available for seven bacterial model organism
    corecore