107 research outputs found
Structure retrieval in liquid-phase electron scattering
Electron scattering on liquid samples has been enabled recently by the
development of ultrathin liquid sheet technologies. The data treatment of
liquid-phase electron scattering has been mostly reliant on methodologies
developed for gas electron diffraction, in which theoretical inputs and
empirical fittings are often needed to account for the atomic form factor and
remove the inelastic scattering background. The accuracy and impact of these
theoretical and empirical inputs has not been benchmarked for liquid-phase
electron scattering data. In this work, we present an alternative data
treatment method that requires neither theoretical inputs nor empirical
fittings. The merits of this new method are illustrated through the retrieval
of real-space molecular structure from experimental electron scattering
patterns of liquid water, carbon tetrachloride, chloroform, and
dichloromethane
Structure retrieval in liquid-phase electron scattering
Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. In this work, we present an alternative data treatment method that is able to retrieve the radial distribution of all the charged particle pairs without the need of either theoretical inputs or empirical fittings. The merits of this new method are illustrated through the retrieval of real-space molecular structure from experimental electron scattering patterns of liquid water, carbon tetrachloride, chloroform, and dichloromethane.
Shown here is the arXiv version
Development of a Rabbit Human Glioblastoma Model for Testing of Endovascular Selective Intra-Arterial Infusion (ESIA) of Novel Stem Cell-Based Therapeutics
BACKGROUND: Endovascular selective intra-arterial (ESIA) infusion of cellular oncotherapeutics is a rapidly evolving strategy for treating glioblastoma. Evaluation of ESIA infusion requires a unique animal model. Our goal was to create a rabbit human GBM model to test IA infusions of cellular therapies and to test its usefulness by employing clinical-grade microcatheters and infusion methods to deliver mesenchymal stem cells loaded with an oncolytic adenovirus, Delta-24-RGD (MSC-D24).
METHODS: Rabbits were immunosuppressed with mycophenolate mofetil, dexamethasone, and tacrolimus. They underwent stereotactic xenoimplantation of human GBM cell lines (U87, MDA-GSC-17, and MDA-GSC-8-11) into the right frontal lobe. Tumor formation was confirmed on magnetic resonance imaging, histologic, and immunohistochemistry analysis. Selective microcatheter infusion of MSC-D24 was performed via the ipsilateral internal carotid artery to assess model utility and the efficacy and safety of this approach.
RESULTS: Twenty-five rabbits were implanted (18 with U87, 2 MDA-GSC-17, and 5 MDA-GSC-8-11). Tumors formed in 68% of rabbits (77.8% for U87, 50.0% for MDA-GSC-17, and 40.0% for MDA-GSC-8-11). On MRI, the tumors were hyperintense on T2-weighted image with variable enhancement (evidence of blood brain barrier breakdown). Histologically, tumors showed phenotypic traits of human GBM including varying levels of vascularity. ESIA infusion into the distal internal carotid artery of 2 ml of MSCs-D24 (107 cells) was safe in the model. Examination of post infusion specimens documented that MSCs-D24 homed to the implanted tumor at 24 hours.
CONCLUSIONS: The intracranial immunosuppressed rabbit human GBM model allows testing of ESIA infusion of novel therapeutics (eg, MSC-D24) in a clinically relevant fashion
The Role of Parental Cognitive, Behavioral, and Motor Profiles in Clinical Variability in Individuals with Chromosome 16p11.2 Deletions
Importance Most disorders caused by copy number variants (CNVs) display significant clinical variability, often referred to as incomplete penetrance and variable expressivity. Genetic and environmental sources of this variability are not well understood.
Objectives To investigate the contributors to phenotypic variability in probands with CNVs involving the same genomic region; to measure the effect size for de novo mutation events; and to explore the contribution of familial background to resulting cognitive, behavioral, and motor performance outcomes in probands with de novo CNVs.
Design, Setting, and Participants Family-based study design with a volunteer sample of 56 individuals with de novo 16p11.2 deletions and their noncarrier parents and siblings from the Simons Variation in Individuals Project.
Main Outcomes and Measures We used linear mixed-model analysis to measure effect size and intraclass correlation to determine the influence of family background for a de novo CNV on quantitative traits representing the following 3 neurodevelopmental domains: cognitive ability (Full-Scale IQ), social behavior (Social Responsiveness Scale), and neuromotor performance (Purdue Pegboard Test). We included an anthropometric trait, body mass index, for comparison.
Results A significant deleterious effect of the 16p11.2 deletion was demonstrated across all domains. Relative to the biparental mean, the effect sizes were −1.7 SD for cognitive ability, 2.2 SD for social behavior, and −1.3 SD for neuromotor performance (P \u3c .001). Despite large deleterious effects, significant positive correlations between parents and probands were preserved for the Full-Scale IQ (0.42 [P = .03]), the verbal IQ (0.53 [P = .004]), and the Social Responsiveness Scale (0.52 [P = .009]) scores. We also observed a 1-SD increase in the body mass index of probands compared with siblings, with an intraclass correlation of 0.40 (P = .07).
Conclusions and Relevance Analysis of families with de novo CNVs provides the least confounded estimate of the effect size of the 16p11.2 deletion on heritable, quantitative traits and demonstrates a 1- to 2-SD effect across all neurodevelopmental dimensions. Significant parent-proband correlations indicate that family background contributes to the phenotypic variability seen in this and perhaps other CNV disorders and may have implications for counseling families regarding their children’s developmental and psychiatric prognoses. Use of biparental mean scores rather than general population mean scores may be more relevant to examine the effect of a mutation or any other cause of trait variation on a neurodevelopmental outcome and possibly on systems of diagnosis and trait ascertainment for developmental disorders
Common genetic variants, acting additively, are a major source of risk for autism
Abstract
Background
Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals.
Methods
By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status.
Results
By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating.
Conclusions
Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.http://deepblue.lib.umich.edu/bitstream/2027.42/112370/1/13229_2012_Article_55.pd
Common Genetic Variants, Acting Additively, Are a Major Source of Risk for Autism
Background: Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods: By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results: By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions: Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability
From national monopoly to Multinational Corporation: how regulation shaped the road towards telecommunications internationalization
One of the consequences of major regulatory reform of the telecommunications sector from the end of the 1970s – particularly, privatization, liberalization and deregulation – was the establishment of a new business environment which permitted former national telecommunications monopolies to expand abroad. From the 1990s, a number of these firms, particularly those based in Europe, joined the rankings of the world’s leading Multinational Corporations. Their internationalization was uneven, however: while some firms internationalised strongly, others ventured abroad much slower. This article explores how the regulatory framework within which telecommunications incumbents evolved over the long-term shaped their subsequent, uneven, paths to internationalization. Two case studies representing ´maximum variation´ are selected: Telefónica, whose early and unrelenting expansion transformed it into one of the world’s most international of Multinational Corporations, and BT, whose overseas ventures failed and, with eroding domestic market share, forced the firm to partially retreat, becoming the least international of the large European incumbents. Long-term ownership, access to capital, management style and exposure to liberalization strongly influenced firms’ approaches to internationalizatio
The Role of Particulate Matter-Associated Zinc in Cardiac Injury in Rats
Background: Exposure to particulate matter (PM) has been associated with increased cardiovascular morbidity; however, causative components are unknown. Zinc is a major element detected at high levels in urban air.Objective We investigated the role of PM-associated zinc in cardiac injury. Methods: We repeatedly exposed 12- to 14-week-old male Wistar Kyoto rats intratracheally (1×/week for 8 or16 weeks) to a) saline (control); b) PM having no soluble zinc (Mount St. Helens ash, MSH); or c) whole-combustion PM suspension containing 14.5 μg/mg of water-soluble zinc at high dose (PM-HD) and d ) low dose (PM-LD), e) the aqueous fraction of this suspension (14.5 μg/mg of soluble zinc) (PM-L), or f ) zinc sulfate (rats exposed for 8 weeks received double the concentration of all PM components of rats exposed for 16 weeks). Results: Pulmonary inflammation was apparent in all exposure groups when compared with saline (8 weeks greater than 16 weeks). PM with or without zinc, or with zinc alone caused small increases in focal subepicardial inflammation, degeneration, and fibrosis. Lesions were not detected in controls at 8 weeks but were noted at 16 weeks. We analyzed mitochondrial DNA damage using quantitative polymerase chain reaction and found that all groups except MSH caused varying degrees of damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving soluble zinc. Expression array analysis of heart tissue revealed modest changes in mRNA for genes involved in signaling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell cycle regulation in zinc but not in MSH-exposed rats. Conclusion: These results suggest that water-soluble PM-associated zinc may be one of the causal components involved in PM cardiac effects
- …