79 research outputs found

    Comparison of Tranexamic Acid and Aminocaproic Acid in Coronary Bypass Surgery

    Get PDF
    Abstract OBJECTIVE: Tranexamic acid (TXA) and ɛ-aminocaproic acid (EACA) are used in coronary bypass surgery for antifibrinolytic therapy. Since the removal of aprotinin, data directly comparing their blood sparing effect and their side effects is still missing. METHODS: Fifty patients undergoing coronary bypass cardiac surgery at St. Vincent’s Hospital and Health Services in Indianapolis, IN were evaluated in a retrospective cohort study. Perioperative data was collected by a thorough chart review. Patients received EACA from 01/01/2013 to 04/05/2013 or TXA from 05/07/2013 to 12/31/2013. Primary outcome was the amount of chest tube output throughout the hospital stay. Secondary outcomes were the amount of blood transfusion requirements, post-operative complications, number of ICU days, need for re-exploration, and in-hospital mortality. RESULTS: All demographic and pre-operative parameters were well comparable. There was no difference in chest tube output (EACA 942 ± 371 mL vs. TXA 1162 ± 480 mL, p=0.077). There were also not any differences in blood transfusion requirements (EACA 4.92 ± 3.29 units vs. TXA 3.44 ± 2.10 units, p=0.064), nor in post-operative complications such as atrial fibrillation, unstable blood pressure, pneumonia, or pleural effusions related to surgery (EACA 20% vs. TXA 32%, p=0.520). There were not any patients in the study who experienced a need for re-exploration or in-hospital mortality. The number of days spent in the ICU (EACA 1.60 ± 1.35 vs. TXA 1.08 ± 0.4, p = 0.0717) were also found to be statistically non-significant. CONCLUSIONS: TXA and EACA are comparable in the effect of chest tube output and blood transfusion requirements, as well as their adverse event profile. Although the number of days spent in the ICU approached statistical significance for favoring TXA, either agent would be appropriate to be utilized at the St. Vincent’s Hospital and Health Services in Indianapolis, IN

    A protocol for enumeration of aquatic viruses by epifluorescence microscopy using Anodisc™ 13 membranes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epifluorescence microscopy is a common method used to enumerate virus-like particles (VLP) from environmental samples and relies on the use of filter membranes with pore sizes < 0.02 μm; the most commonly used protocols employ 25 mm Anodisc™ membranes with a built-in support ring. Other filters with small pore sizes exist, including the 13 mm Anodisc™ membranes without a support ring. However, the use of these membranes for viral enumeration has not been previously reported.</p> <p>Results</p> <p>Here we describe a modified protocol for 13 mm Anodisc membranes that uses a custom filter holder that can be readily constructed in individual investigators' laboratories from commercially available Swinnex<sup>® </sup>filter holders. We compared VLP concentrations obtained from phage lysates and seawater samples using both Anodisc membranes, as well as Nuclepore™ small pore-size membranes (0.015 or 0.030 μm). The 13 mm Anodisc membranes gave comparable estimates of VLP abundance to those obtained with the 25 mm Anodisc membranes when similar staining methods were employed. Both Nuclepore membranes typically gave an order of magnitude lower VLP abundance values for environmental samples.</p> <p>Conclusions</p> <p>The 13 mm Anodisc membranes are less costly and require smaller sample volumes than their 25 mm counterpart making them ideal for large-scale studies and sample replication. This method increases the options of reliable approaches available for quantifying VLP from environmental samples.</p

    Identifying the source of unknown microcystin genes and predicting microcystin variants by comparing genes within uncultured cyanobacterial cells

    Get PDF
    While multiple phylogenetic markers have been used in the culture independent study of microcystin producing cyanobacteria, in only a few instances have multiple markers been studied within individual cells, and in all cases these studies have been conducted with cultured isolates. Here, we isolate and evaluate large DNA fragments (\u3e 6 kb) encompassing two genes involved in microcystin biosynthesis (mcyA2 and mcyB1) and use them to identify the source of gene fragments found in water samples. Further investigation of these gene loci from individual cyanobacterial cells allowed for improved analysis of the genetic diversity within microcystin producers as well as a method to predict microcystin variants for individuals. These efforts have also identified the source of the novel mcyA genotype previously termed Microcystis-like that is pervasive in the Laurentian Great Lakes and predict the microcystin variant(s) that it produces

    Functional Characteristics of the Gut Microbiome in C57BL/6 Mice Differentially Susceptible to Plasmodium yoelii

    Get PDF
    C57BL/6 mice are widely used for in vivo studies of immune function and metabolism in mammals. In a previous study, it was observed that when C57BL/6 mice purchased from different vendors were infected with Plasmodium yoelii, a causative agent of murine malaria, they exhibited both differential immune responses and significantly different parasite burdens: these patterns were reproducible when gut contents were transplanted into gnotobiotic mice. To gain insight into the mechanism of resistance, we removed whole ceca from mice purchased from two vendors, Taconic Biosciences (low parasitemia) and Charles River Laboratories (high parasitemia), to determine the combined host and microflora metabolome and metatranscriptome. With the exception of two Charles River samples, we observed 90% similarity in overall bacterial gene expression within vendors and 80% similarity between vendors. In total 33 bacterial genes were differentially expressed in Charles River mice (p-value \u3c 0.05) relative to the mice purchased from Taconic. Included among these, fliC, ureABC, and six members of the nuo gene family were overrepresented in microbiomes susceptible to more severe malaria. Moreover, 38 mouse genes were differentially expressed in these purported genetically identical mice. Differentially expressed genes included basigin, a cell surface receptor required for P. falciparum invasion of red blood cells. Differences in metabolite pools were detected, though their relevance to malaria infection, microbial community activity, or host response is not yet understood. Our data have provided new targets that may connect gut microbial activity to malaria resistance and susceptibility phenotypes in the C57BL/6 model organism

    Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake

    Get PDF
    Carbon and nutrient cycles in large temperate lakes such as Lake Erie are primarily driven by phototrophic and heterotrophic microorganisms, although our understanding of these is often constrained to late spring through summer due to logistical constraints. During periods of \u3e 90% ice cover in February of 2008, 2009, and 2010, we collected samples from an icebreaker for an examination of bacterial production as well as microbial community structure. In comparison with summer months (August 2002 and 2010), we tested hypotheses concerning seasonal changes in microbial community diversity and production. Bacterial production estimates were c. 2 orders of magnitude higher (volume normalized) in summer relative to winter. Our observations further demonstrate that the microbial community, including single-celled phototrophs, varied in composition between August and February. Sediment traps deployed and collected over a 3 year period (2008-2011) confirmed that carbon export was ongoing and not limiting winter production. The results support the notion that active primary producers in winter months export carbon to the sediments that is not consumed until the warmer seasons. The establishment of this linkage is a critical observation in efforts to understand the extent and severity of annual summertime formations of a zone of regional hypoxia in Lake Erie. Seasonal changes in microbial community productivity and diversity suggest primary production in winter months may exacerbate summer hypoxia in Lake Eri. © 2014 Federation of European Microbiological Societies

    Seasonal Gene Expression and the Ecophysiological Implications of Toxic Microcystis aeruginosa Blooms in Lake Taihu

    Get PDF
    Harmful cyanobacterial blooms represent an increasing threat to freshwater resources globally. Despite increased research, the physiological basis of how the dominant bloom-forming cyanobacteria, Microcystis spp., proliferate and then maintain high population densities through changing environmental conditions is poorly understood. In this study, we examined the transcriptional profiles of the microbial community in Lake Taihu, China at 9 stations sampled monthly from June to October in 2014. To target Microcystis populations, we collected metatranscriptomic data and mapped reads to the M. aeruginosa NIES 843 genome. Our results revealed significant temporal gene expression patterns, with many genes separating into either early or late bloom clusters. About one-third of genes observed from M. aeruginosa were differentially expressed between these two clusters. Conductivity and nutrient availability appeared to be the environmental factors most strongly associated with these temporal gene expression shifts. Compared with the early bloom season (June and July), genes involved in N and P transport, energy metabolism, translation, and amino acid biosynthesis were down-regulated during the later season (August to October). In parallel, genes involved in regulatory functions as well as transposases and the production of microcystin and extracellular polysaccharides were up-regulated in the later season. Our observation indicates an eco-physiological shift occurs within the Microcystis spp. transcriptome as cells move from the rapid growth of early summer to bloom maintenance in late summer and autumn

    A Student\u27s Guide to giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae

    Get PDF
    The discovery of infectious particles that challenge conventional thoughts concerning “what is a virus” has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning “giant viruses”, with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host–virus systems that fall into this “giant” category, demonstrating that this field of inquiry presents great opportunities for future research

    Mining of unexplored habitats for novel chitinases—chiA as a helper gene proxy in metagenomics

    Get PDF
    The main objective of this study was to assess the abundance and diversity of chitin-degrading microbial communities in ten terrestrial and aquatic habitats in order to provide guidance to the subsequent exploration of such environments for novel chitinolytic enzymes. A combined protocol which encompassed (1) classical overall enzymatic assays, (2) chiA gene abundance measurement by qPCR, (3) chiA gene pyrosequencing, and (4) chiA gene-based PCR-DGGE was used. The chiA gene pyrosequencing is unprecedented, as it is the first massive parallel sequencing of this gene. The data obtained showed the existence across habitats of core bacterial communities responsible for chitin assimilation irrespective of ecosystem origin. Conversely, there were habitat-specific differences. In addition, a suite of sequences were obtained that are as yet unregistered in the chitinase database. In terms of chiA gene abundance and diversity, typical low-abundance/diversity versus high-abundance/diversity habitats was distinguished. From the combined data, we selected chitin-amended agricultural soil, the rhizosphere of the Arctic plant Oxyria digyna and the freshwater sponge Ephydatia fluviatilis as the most promising habitats for subsequent bioexploration. Thus, the screening strategy used is proposed as a guide for further metagenomics-based exploration of the selected habitats

    Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee
    • …
    corecore