329 research outputs found

    The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology

    Get PDF
    We describe the realization of a symmetric integrated channel waveguide Mach-Zehnder sensor which uses the evanescent field to detect small refractive-index changes (¿nmin ¿ 1 × 10¿4) near the guiding-layer surface. This guiding layer consists of ridge structures with a height of 3 nm and a width of 4 ¿m made in Si3N4. This layer has a thickness of 100 nm. The sensor device has been tested with glucose solutions of different bulk refractive indices. Results of a slab-model calculation are in good agreement with obtained experimental results. The feasibility of applying this sensor for immunosensing, detecting directly the binding of antigen to an antibody receptor surface, is shown with antibody-antigen binding experiments

    Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes

    Get PDF
    An indirect effect of global warming is a reduction in the depth of the upper mixed layer (UML) causing organisms to be exposed to higher levels of ultraviolet (UVR, 280–400 nm) and photosynthetically active radiation (PAR, 400–700 nm). This can affect primary and bacterial production as well as the commensalistic phytoplankton–bacteria relationship. The combined effects of UVR and reduction in the depth of the UML were assessed on variables related to the metabolism of phytoplankton and bacteria, during in situ experiments performed with natural pico- and nanoplankton communities from two oligotrophic lakes with contrasting UVR transparency (high-UVR versus low-UVR waters) of southern Spain. The negative UVR effects on epilimnetic primary production (PP) and on heterotrophic bacterial production (HBP), intensified under increased stratification, were higher in the low-UVR than in the high-UVR lake, and stronger on the phytoplanktonic than on the heterotrophic bacterial communities. Under UVR and increased stratification, the commensalistic phytoplankton–bacteria relationship was strengthened in the high-UVR lake where excretion of organic carbon (EOC) rates exceeded the bacterial carbon demand (BCD; i.e., BCD : EOC(%) ratio 100). The greater UVR damage to phytoplankton and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates that these ecosystems would be especially vulnerable to UVR and increased stratification as stressors related to global climate change. Thus, our findings may have important implications for the carbon cycle in oligotrophic lakes of the Mediterranean region.This study was supported by the Ministerio Español de Medio Ambiente, Rural y Marino (PN2009/067), Ciencia e Innovación (CGL2011-23681), Junta de Andalucía (Excelencia CVI-02598 and P09-RNM-5376), Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET (PIP no. 112-201001-00228), and Fundación Playa Unión. G. Herrera and C. Durán were supported by a Formación de Profesorado Universitario grant from the Spanish government. The authors are indebted to the staff of Sierra Nevada National Park and Lagunas de Ruidera Natural Park for permission to work, to E. Jiménez-Coll for the bacterial production analysis, and to D. Nesbitt for writing assistance in English

    Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe

    Get PDF
    Global change, together with human activities, has resulted in increasing amounts of organic material (including nutrients) that water bodies receive. This input further attenuates the penetration of solar radiation, leading to the view that opaque lakes are more "protected" from solar ultraviolet radiation (UVR) than clear ones. Vertical mixing, however, complicates this view as cells are exposed to fluctuating radiation regimes, for which the effects have, in general, been neglected. Furthermore, the combined impacts of mixing, together with those of UVR and nutrient inputs are virtually unknown. In this study, we carried out complex in situ experiments in three high mountain lakes of Spain (Lake Enol in the National Park Picos de Europa, Asturias, and lakes Las Yeguas and La Caldera in the National Park Sierra Nevada, Granada), used as model ecosystems to evaluate the joint impact of these climate change variables. The main goal of this study was to address the question of how short-term pulses of nutrient inputs, together with vertical mixing and increased UVR fluxes modify the photosynthetic responses of phytoplankton. The experimentation consisted in all possible combinations of the following treatments: (a) solar radiation: UVR + PAR (280–700 nm) versus PAR (photosynthetically active radiation) alone (400–700 nm); (b) nutrient addition (phosphorus (P) and nitrogen (N)): ambient versus addition (P to reach to a final concentration of 30 μg P L−1, and N to reach N:P molar ratio of 31); and (c) mixing: mixed (one rotation from surface to 3 m depth (speed of 1 m 4 min−1, total of 10 cycles)) versus static. Our findings suggest that under ambient nutrient conditions there is a synergistic effect between vertical mixing and UVR, increasing phytoplankton photosynthetic inhibition and excretion of organic carbon (EOC) from opaque lakes as compared to algae that received constant mean irradiance within the epilimnion. The opposite occurs in clear lakes where antagonistic effects were determined, with mixing partially counteracting the negative effects of UVR. Nutrient input, mimicking atmospheric pulses from Saharan dust, reversed this effect and clear lakes became more inhibited during mixing, while opaque lakes benefited from the fluctuating irradiance regime. These climate change related scenarios of nutrient input and increased mixing, would not only affect photosynthesis and production in lakes, but might also further influence the microbial loop and trophic interactions via enhanced EOC under fluctuating UVR exposure.This work was supported by Ministerio Español de Medio Ambiente, Rural y Marino (PN2009/067) and Ciencia e Innovación (GLC2008-01127/BOS and CGL2011-23681), Junta de Andalucía (Excelencia CVI-02598), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2007-1651) and Fundación Playa Unión; GH and CD were supported by the Spanish Government – Formación de Profesorado Universitario Grant

    Lab-on-a-chip platforms based on highly sensitive nanophotonic Si biosensors for single nucleotide DNA testing

    Get PDF
    In order to solve the drawbacks of sensitivity and portability in optical biosensors we have developed ultrasensitive and miniaturized photonic silicon sensors able to be integrated in a "lab-on-a-chip" microsystem platform. The sensors are integrated Mach-Zehnder interferometers based on TIR optical waveguides (Si/SiO2/Si3N4) of micro/nanodimensions. We have applied this biosensor for DNA testing and for detection of single nucleotide polymorphisms at BRCA-1 gene, involved in breast cancer development, without target labeling. The oligonucleotide probe is immobilized by covalent attachment to the sensor surface through silanization procedures. The hybridization was performed for different DNA target concentrations showing a lowest detection limit at 10 pM. Additionally, we have detected the hybridization of different concentrations of DNA target with two mismatching bases corresponding to a mutation of the BRCA-1 gene. Following the way of the lab-on-a-chip microsystem, integration with the microfluidics has been achieved by using a novel fabrication method of 3-D embedded microchannels using the polymer SU-8 as structural material. The optofluidic chip shows good performances for biosensing

    Hybrid Closed-Loop System Achieves Optimal Perioperative Glycemia in a Boy With Type 1 Diabetes: A Case Report

    Get PDF
    The goal in type 1 diabetes (T1D) therapy is to maintain optimal glycemic control under any circumstance. Diabetes technology is in continuous development to achieve this goal. The most advanced Food and Drug Administration- and European Medicines Agency-approved devices are hybrid closed-loop (HCL) systems, which deliver insulin subcutaneously in response to glucose levels according to an automated algorithm. T1D is frequently encountered in the perioperative period. The latest international guidelines for the management of children with diabetes undergoing surgery include specific adjustments to the patient's insulin therapy, hourly blood glucose monitoring, and intravenous (IV) insulin infusion. However, these guidelines were published while the HCL systems were still marginal. We present a case of a 9-year-old boy with long-standing T1D, under HCL system therapy for the last 9 months, and needing surgery for an appendectomy. We agreed with the family, the surgical team, and the anesthesiologists to continue HCL insulin infusion, without further adjustments, hourly blood glucose checks or IV insulin, while monitoring closely. The HCL system was able to keep glycemia within range for the total duration of the overnight fast, the surgery, and the initial recovery, without any external intervention or correction bolus. This is, to the best of our knowledge, the first reported pediatric case to undergo major surgery using a HCL system, and the results were absolutely satisfactory for the patient, his family, and the medical team. We believe that technology is ripe enough to advocate for a "take your pump to surgery" message, minimizing the impact and our interventions. The medical team may discuss this possibility with the family and patients

    Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation

    Get PDF
    To evaluate the influence that parasites have on the losses of Apis mellifera it is essential to monitor their presence in the colonies over time. Here we analysed the occurrence of nosematids, trypanosomatids and neogregarines in five homogeneous colonies for up to 21 months until they collapsed. The study, which combined the use of several molecular markers with the application of a massive parallel sequencing technology, provided valuable insights into the epidemiology of these parasites: (I) it enabled the detection of parasite species rarely reported in honeybees (Nosema thomsoni, Crithidia bombi, Crithidia acanthocephali) and the identification of two novel taxa; (II) it revealed the existence of a high rate of co-infections (80% of the samples harboured more than one parasite species); (III) it uncovered an identical pattern of seasonal variation for nosematids and trypanosomatids, that was different from that of neogregarines; (IV) it showed that there were no significant differences in the fraction of positive samples, nor in the levels of species diversity, between interior and exterior bees; and (V) it unveiled that the variation in the number of parasite species was not directly linked with the failure of the colonies
    • …
    corecore