6 research outputs found

    New multicellular marine macroalgae from the early Tonian of northwestern Canada

    Get PDF
    Molecular phylogenetic data suggest that photosynthetic eukaryotes first evolved in freshwater environments in the early Proterozoic and diversified into marine environments by the Tonian Period, but early algal evolution is poorly reflected in the fossil record. Here, we report newly discovered, millimeter- to centimeter-scale macrofossils from outershelf marine facies of the ca. 950–900 Ma (Re-Os minimum age constraint = 898 ± 68 Ma) Dolores Creek Formation in the Wernecke Mountains, northwestern Canada. These fossils, variably preserved by iron oxides and clay minerals, represent two size classes. The larger forms feature unbranching thalli with uniform cells, differentiated cell walls, longitudinal striations, and probable holdfasts, whereas the smaller specimens display branching but no other diagnostic features. While the smaller population remains unresolved phylogenetically and may represent cyanobacteria, we interpret the larger fossils as multicellular eukaryotic macroalgae with a plausible green algal affinity based on their large size and presence of rib-like wall ornamentation. Considered as such, the latter are among the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic. Together with other Tonian fossils, the Dolores Creek fossils indicate that eukaryotic algae, including green algae, colonized marine environments by the early Neoproterozoic Era

    Subglacial Meltwater Supported Aerobic Marine Habitats During Snowball Earth

    Full text link
    The Earth’s most severe ice ages interrupted a crucial interval in eukaryotic evolution with widespread ice coverage during the Cryogenian Period (720 to 635 Ma). Aerobic eukaryotes must have survived the “Snowball Earth” glaciations, requiring the persistence of oxygenated marine habitats, yet evidence for these environments is lacking. We examine iron formations within globally distributed Cryogenian glacial successions to reconstruct the redox state of the synglacial oceans. Iron isotope ratios and cerium anomalies from a range of glaciomarine environments reveal pervasive anoxia in the ice-covered oceans but increasing oxidation with proximity to the ice shelf grounding line. We propose that the outwash of subglacial meltwater supplied oxygen to the synglacial oceans, creating glaciomarine oxygen oases. The confluence of oxygen-rich meltwater and iron-rich seawater may have provided sufficient energy to sustain chemosynthetic communities. These processes could have supplied the requisite oxygen and organic carbon source for the survival of early animals and other eukaryotic heterotrophs through these extreme glaciations

    Origin of the Neoproterozoic Fulu iron formation, South China: Insights from iron isotopes and rare earth element patterns

    No full text
    International audienceIn the Neoproterozoic Era there was widespread deposition of iron formations in close association with global or near glaciations. These 'Snowball Earth' glaciations likely played a key role in iron formation distribution and deposition. However, the environmental conditions, Fe sources, and formation mechanisms remain debated. Here we present the rare earth element geochemistry and Fe isotope composition of the synglacial iron formation within the Neoproterozoic Fulu Formation, South China. The Fulu iron formation consists of layers of authigenic minerals (mainly hematite) and detrital components (quartz, feldspars, Fe chlorite, and minor biotite). Positive Eu anomalies in one of the Fulu localities indicate a hydrothermal influence, suggesting that Fe was mainly sourced from distal hydrothermal systems. The bulk-rock Fe isotope composition of the Fulu iron formation shows a large range, with δ56Fe from -0.23 to +1.78‰. Correlation between bulk-rock δ56Fe values and Al/Fe ratios demonstrates that δ56Fe variability reflects, in part, varying proportions of authigenic versus detrital components. The Fe isotope composition of authigenic hematite is calculated by a linear regression and shows δ56Fe between +0.83 and +2.21‰, with an average at +1.54 ± 0.50‰ (2σ, n = 41). Using a dispersion-reaction model, the high δ56Fe values of hematite constrain local dissolved O2 concentrations of the ocean to less than 0.4 nmol/L, even in the shallow part of the water column. This relationship is consistent with highly reducing conditions in the Neoproterozoic oceans favored by isolation from the atmosphere by a sea ice. We attribute the extremely positive values to partial iron oxidation in waters that were cold relative to modern surface oceans. The dominant occurrence of hematite supports an abiotic precipitation pathway, given that biological activity would have introduced organic matter to the sediments and led to partial reduction of Fe(III) oxides and subsequent formation of magnetite and/or siderite, as is observed in Archean and Paleoproterozoic iron formations. Oxic glacial meltwater and/or O2 vertical transfer from the atmosphere to the upper ocean linked to ice dynamics is likely to have mediated the abiotic oxidation. We propose that vertical transfer of O2 resulted from the deposition of snow that trapped air bubbles at the top of the glacier coupled to a melting of the bottom of the glacier, which in combination delivered a limited but continuous amount of O2 to the ocean

    Strong evidence for a weakly oxygenated ocean–atmosphere system during the Proterozoic

    No full text
    Earth’s transition from anoxic oceans and atmosphere to a well-oxygenated state led to major changes in nearly every surficial system. However, estimates of surface oxygen levels in the billion years preceding this shift span two orders of magnitude, suggesting a poor understanding of the evolution of the oxygen cycle. We use the isotopic record of iron oxides deposited in ancient shallow marine environments to show that oxygen remained at extremely low levels in the ocean–atmosphere system for most of Earth’s history, and that a rise in oxygen occurred in step with the expansion of complex, eukaryotic ecosystems. These results indicate that Earth is capable of stabilizing at low atmospheric oxygen levels, with important implications for exploration of exoplanet biosignatures.ISSN:0027-8424ISSN:1091-649
    corecore