577 research outputs found
Part Variation Modeling to Avoid Scrap Parts in Multi-stage Production Systems
Manufacturing systems for today's products are complex systems requiring a variety of different processes in order to be able to manufacture all necessary part features. This also applies to the production of rotating components, which have experienced increasing demand at the latest due to the growth in mobility. As in almost every manufacturing process, quality-reducing defects can occur due to deviations for example tool wear, which cannot always be avoided. Those, that have accumulated from previous process steps can cause the occurrence of superimposed defects. This leads to complex relationships between quality defects in the end product and the numerous parameters of the manufacturing processes. To remain competitive, production must be optimized in order to identify defects as early as possible, as well as their dependencies and variation patterns. The paper presents an approach to identify and model part variations within multi-stage production systems. Subsequently, based on a detected deviation, a downstream compensation strategy can be proposed at an early stage of the manufacturing process, which uses the capability of the overall system to fundamentally eliminate rejects
Diversity of gut microflora is required for the generation of B cell with regulatory properties in a skin graft model
B cells have been reported to promote graft rejection through alloantibody production. However, there is growing evidence that B cells can contribute to the maintenance of tolerance. Here, we used a mouse model of MHC-class I mismatched skin transplantation to investigate the contribution of B cells to graft survival. We demonstrate that adoptive transfer of B cells prolongs skin graft survival but only when the B cells were isolated from mice housed in low sterility "conventional" (CV) facilities and not from mice housed in pathogen free facilities (SPF). However, prolongation of skin graft survival was lost when B cells were isolated from IL-10 deficient mice housed in CV facilities. The suppressive function of B cells isolated from mice housed in CV facilities correlated with an anti-inflammatory environment and with the presence of a different gut microflora compared to mice maintained in SPF facilities. Treatment of mice in the CV facility with antibiotics abrogated the regulatory capacity of B cells. Finally, we identified transitional B cells isolated from CV facilities as possessing the regulatory function. These findings demonstrate that B cells, and in particular transitional B cells, can promote prolongation of graft survival, a function dependent on licensing by gut microflora
FRAP Analysis Reveals Stabilization of Adhesion Structures in the Epidermis Compared to Cultured Keratinocytes
Proper development and tissue maintenance requires cell-cell adhesion structures, which serve diverse and crucial roles in tissue morphogenesis. Epithelial tissues have three main types of cell-cell junctions: tight junctions, which play a major role in barrier formation, and adherens junctions and desmosomes, which provide mechanical stability and organize the underlying cytoskeleton. Our current understanding of adhesion function is hindered by a lack of tools and methods to image junctions in mammals. To better understand the dynamics of adhesion in tissues we have created a knock-in ZO-1-GFP mouse and a BAC-transgenic mouse expressing desmoplakin I-GFP. We performed fluorescence recovery after photobleaching (FRAP) experiments to quantify the turnover rates of the tight junction protein ZO-1, the adherens junction protein E-cadherin, and the desmosomal protein desmoplakin in the epidermis. Proteins at each type of junction are remarkably stable in the epidermis, in contrast to the high observed mobility of E-cadherin and ZO-1 at adherens junctions and tight junctions, respectively, in cultured cells. Our data demonstrate that there are additional mechanisms for stabilizing junctions in tissues that are not modeled by cell culture
B lymphocytes contribute to indirect pathway T cell sensitisation via acquisition of extracellular vesicles
B cells have been implicated in transplant rejection via antibody‐mediated mechanisms and more recently by presenting donor‐antigens to T cells. We have shown in patients with chronic antibody‐mediated rejection that B cells control the indirect T cell alloresponses. To understand more about the role of B cells as antigen presenting cells for CD4⁺ T cell with indirect allospecificity, B cells were depleted in C57BL/6 mice, using an anti‐CD20 antibody, prior to receiving MHC‐class I‐mismatched (Kᵈ) skin. The absence of B cells at the time of transplantation prolonged skin graft survival. To study the mechanisms behind this observation, T cells with indirect allospecificity were transferred in mice receiving a Kᵈ skin transplant. T cell proliferation was markedly inhibited in the absence of recipient B cells, suggesting that B cells contribute to indirect pathway sensitisation. Furthermore, we have shown that a possible way in which B cells present alloantigens is via acquisition of MHC‐peptide complexes. Finally, we demonstrate that the addition of B cell depletion to the transfer of Tregs with indirect alloresponse further prolonged skin graft survival. This study supports an important role for B cells in indirect T cell priming and further emphasises the advantage of combination therapies in prolonging transplant survival
Lower-limb amputees can reduce the energy cost of walking when assisted by an Active Pelvis Orthosis
Exoskeletons could compete with active prostheses as effective aids to reduce the increased metabolic demands faced by lower-limb amputees during locomotion. However, little evidence of their efficacy with amputees has been provided so far. In this paper, a portable hip exoskeleton has been tested with seven healthy subjects and two transfemoral amputees, with the final goal to verify whether a hip flexion-extension assistance could be effective in reducing the metabolic cost of walking. The metabolic power of the participants was estimated through indirect calorimetry during alternated repetitions of three treadmill-based walking conditions: without the exoskeleton (NoExo), with the exoskeleton in zero-torque mode (ExoTM) and with the exoskeleton providing hip flexion-extension assistance (ExoAM). The results showed that the exoskeleton reduced the net metabolic power of the two amputees in ExoAM with respect to NoExo, by 5.0% and 3.4%. With healthy subjects, a 5.5±3.1% average reduction in the metabolic power was observed during ExoAM compared to ExoTM (differences were not statistically significant), whereas ExoAM required 3.9±3.0% higher metabolic power than NoExo (differences were not statistically significant). These results provide initial evidence of the potential of exoskeletal technologies for assisting lower-limb amputees, thereby paving the way for further experimentations
Aging Impairs Recipient T Cell Intrinsic and Extrinsic Factors in Response to Transplantation
As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.Using murine experimental models, we found that aging impaired the host environment to expand and activate antigen specific CD8(+) T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation
An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment
Regulatory T cells (Tregs) play a pivotal role in maintaining immunological tolerance, but they can also play a detrimental role by preventing antitumor responses. Here, we characterized T helper (Th)-like Treg subsets to further delineate their biological function and tissue distribution, focusing on their possible contribution to disease states. RNA sequencing and functional assays revealed that Th2-like Tregs displayed higher viability and autocrine interleukin-2 (IL-2)-mediated activation than other subsets. Th2-like Tregs were preferentially found in tissues rather than circulation and exhibited the highest migratory capacity toward chemokines enriched at tumor sites. These cellular responses led us to hypothesize that this subset could play a role in maintaining a tumorigenic environment. Concurrently, Th2-like Tregs were enriched specifically in malignant tissues from patients with melanoma and colorectal cancer compared to healthy tissue. Overall, our results suggest that Th2-like Tregs may contribute to a tumorigenic environment due to their increased cell survival, higher migratory capacity, and selective T-effector suppressive ability.
Graphical Abstrac
The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro
Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma
Steroid regulation: An overlooked aspect of tolerance and chronic rejection in kidney transplantation.
Steroid conversion (HSD11B1, HSD11B2, H6PD) and receptor genes (NR3C1, NR3C2) were examined in kidney-transplant recipients with "operational tolerance" and chronic rejection (CR), independently and within the context of 88 tolerance-associated genes. Associations with cellular types were explored. Peripheral whole-blood gene-expression levels (RT-qPCR-based) and cell counts were adjusted for immunosuppressant drug intake. Tolerant (n = 17), stable (n = 190) and CR patients (n = 37) were compared. Healthy controls (n = 14) were used as reference. The anti-inflammatory glucocorticoid receptor (NR3C1) and the cortisol-activating HSD11B1 and H6PD genes were up-regulated in CR and were lowest in tolerant patients. The pro-inflammatory mineralocorticoid gene (NR3C2) was downregulated in stable and CR patients. NR3C1 was associated with neutrophils and NR3C2 with T-cells. Steroid conversion and receptor genes, alone, enabled classification of tolerant patients and were major contributors to gene-expression signatures of both, tolerance and CR, alongside known tolerance-associated genes, revealing a key role of steroid regulation and response in kidney transplantation
- …