5,830 research outputs found

    Size confinement effect in graphene grown on 6H-SiC (0001) substrate

    Full text link
    We have observed the energy structure in the density of occupied states of graphene grown on n-type 6H-SiC (0001). The structure revealed with photoelectron spectroscopy is described by creation of the quantum well states whose number and the energy position (E1 = 0.3 eV, E2 = 1.2 eV, E3 = 2.6 eV ) coincide with the calculated ones for deep (V = 2.9 eV) and narrow (d = 2.15 A) quantum well formed by potential relief of the valence bands in the structure graphene/n-SiC. We believe that the quantum well states should be formed also in graphene on dielectric and in suspended graphene.Comment: 7 pages, 4 figure

    Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''

    Full text link
    Burgess and Marini have recently pointed out that the leading contribution to the damping rate of energetic gluons and quarks in the QCD plasma, given by γ=cg2ln(1/g)T\gamma=c g^2\ln(1/g)T, can be obtained by simple arguments obviating the need of a fully resummed perturbation theory as developed by Braaten and Pisarski. Their calculation confirmed previous results of Braaten and Pisarski, but contradicted those proposed by Lebedev and Smilga. While agreeing with the general considerations made by Burgess and Marini, I correct their actual calculation of the damping rates, which is based on a wrong expression for the static limit of the resummed gluon propagator. The effect of this, however, turns out to be cancelled fortuitously by another mistake, so as to leave all of their conclusions unchanged. I also verify the gauge independence of the results, which in the corrected calculation arises in a less obvious manner.Comment: 5 page

    Dynamics of Two-Level System Interacting with Random Classical Field

    Full text link
    The dynamics of a particle interacting with random classical field in a two-well potential is studied by the functional integration method. The probability of particle localization in either of the wells is studied in detail. Certain field-averaged correlation functions for quantum-mechanical probabilities and the distribution function for the probabilities of final states (which can be considered as random variables in the presence of a random field) are calculated. The calculated correlators are used to discuss the dependence of the final state on the initial state. One of the main results of this work is that, although the off-diagonal elements of density matrix disappear with time, a particle in the system is localized incompletely (wave-packet reduction does not occur), and the distribution function for the probability of finding particle in one of the wells is a constant at infinite time.Comment: 5 page

    Entanglement in a Noninteracting Mesoscopic Structure

    Full text link
    We study the time dependent electron-electron and electron-hole correlations in a mesoscopic device which is splitting an incident current of free fermions into two spatially separated particle streams. We analyze the appearance of entanglement as manifested in a Bell inequality test and discuss its origin in terms of local spin-singlet correlations already present in the initial channel and the action of post-selection during the Bell type measurement. The time window over which the Bell inequality is violated is determined in the tunneling limit and for the general situation with arbitrary transparencies. We compare our results with alternative Bell inequality tests based on coincidence probabilities.Comment: 9 pages, 2 figure
    corecore