218 research outputs found

    Excitonic and Quasiparticle Life Time Effects on Silicon Electron Energy Loss Spectrum from First Principles

    Full text link
    The quasiparticle decays due to electron-electron interaction in silicon are studied by means of first-principles all-electron GW approximation. The spectral function as well as the dominant relaxation mechanisms giving rise to the finite life time of quasiparticles are analyzed. It is then shown that these life times and quasiparticle energies can be used to compute the complex dielectric function including many-body effects without resorting to empirical broadening to mimic the decay of excited states. This method is applied for the computation of the electron energy loss spectrum of silicon. The location and line shape of the plasmon peak are discussed in detail.Comment: 4 pages, 3 figures, submitted to PR

    Anisotropic thermal expansion of bismuth from first principles

    Full text link
    Some anisotropy in both mechanical and thermodynamical properties of bismuth is expected. A combination of density functional theory total energy calculations and density functional perturbation theory in the local density approximation is used to compute the elastic constants at 0 K using a finite strain approach and the thermal expansion tensor in the quasiharmonic approximation. The overall agreement with experiment is good. Furthermore, the anisotropy in the thermal expansion is found to arise from the anisotropy in both the directional compressibilities and the directional Gr\"uneisen functions.Comment: accepted for publication in PR

    Dispersion corrections in graphenic systems: a simple and effective model of binding

    Full text link
    We combine high-level theoretical and \emph{ab initio} understanding of graphite to develop a simple, parametrised force-field model of interlayer binding in graphite, including the difficult non-pairwise-additive coupled-fluctuation dispersion interactions. The model is given as a simple additive correction to standard density functional theory (DFT) calculations, of form ΔU(D)=f(D)[UvdW(D)−UDFT(D)]\Delta U(D)=f(D)[U^{vdW}(D)-U^{DFT}(D)] where DD is the interlayer distance. The functions are parametrised by matching contact properties, and long-range dispersion to known values, and the model is found to accurately match high-level \emph{ab initio} results for graphite across a wide range of DD values. We employ the correction on the difficult bigraphene binding and graphite exfoliation problems, as well as lithium intercalated graphite LiC6_6. We predict the binding energy of bigraphene to be 0.27 J/m^2, and the exfoliation energy of graphite to be 0.31 J/m^2, respectively slightly less and slightly more than the bulk layer binding energy 0.295 J/m^2/layer. Material properties of LiC6_6 are found to be essentially unchanged compared to the local density approximation. This is appropriate in view of the relative unimportance of dispersion interactions for LiC6_6 layer binding

    Simulation of hydrogenated graphene Field-Effect Transistors through a multiscale approach

    Full text link
    In this work, we present a performance analysis of Field Effect Transistors based on recently fabricated 100% hydrogenated graphene (the so-called graphane) and theoretically predicted semi-hydrogenated graphene (i.e. graphone). The approach is based on accurate calculations of the energy bands by means of GW approximation, subsequently fitted with a three-nearest neighbor (3NN) sp3 tight-binding Hamiltonian, and finally used to compute ballistic transport in transistors based on functionalized graphene. Due to the large energy gap, the proposed devices have many of the advantages provided by one-dimensional graphene nanoribbon FETs, such as large Ion and Ion/Ioff ratios, reduced band-to-band tunneling, without the corresponding disadvantages in terms of prohibitive lithography and patterning requirements for circuit integration

    Pressure-Induced Simultaneous Metal-Insulator and Structural-Phase Transitions in LiH: a Quasiparticle Study

    Full text link
    A pressure-induced simultaneous metal-insulator transition (MIT) and structural-phase transformation in lithium hydride with about 1% volume collapse has been predicted by means of the local density approximation (LDA) in conjunction with an all-electron GW approximation method. The LDA wrongly predicts that the MIT occurs before the structural phase transition. As a byproduct, it is shown that only the use of the generalized-gradient approximation together with the zero-point vibration produces an equilibrium lattice parameter, bulk modulus, and an equation of state that are in excellent agreement with experimental results.Comment: 7 pages, 4 figures, submitted to Europhysics Letter

    Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory

    Full text link
    Via a novel experiment, Liu \emph{et al.} [Phys. Rev. B, {\bf 85}, 205418 (2012)] estimated the graphite binding energy, specifically the cleavage energy, an important physical property of bulk graphite. We re-examine the data analysis and note that within the standard Lennard-Jones model employed, there are difficulties in achieving internal consistency in the reproduction of the graphite elastic properties. By employing similar models which guarantee consistency with the elastic constant, we find a wide range of model dependent binding energy values from the same experimental data. We attribute some of the difficulty in the determination of the binding energy to: i) limited theoretical understanding of the van der Waals dispersion of graphite cleavage, ii) the mis-match between the strong bending stiffness of the graphite-SiO2_2 cantilever and the weak asymptotic inter-layer forces that are integrated over to produce the binding energy. We find, however, that the data does support determination of a maximum inter-layer force that is relatively model independent. We conclude that the peak force per unit area is 1.1±0.151.1 \pm 0.15GPa for cleavage, and occurs at an inter-layer spacing of 0.377±0.0130.377\pm 0.013nm

    Huge excitonic effects in layered hexagonal boron nitride

    Full text link
    The calculated quasiparticle band structure of bulk hexagonal boron nitride using the all-electron GW approximation shows that this compound is an indirect-band-gap semiconductor. The solution of the Bethe-Salpeter equation for the electron-hole two-particle Green function has been used to compute its optical spectra and the results are found in excellent agreement with available experimental data. A detailed analysis is made for the excitonic structures within the band gap and found that the excitons belong to the Frenkel class and are tightly confined within the layers. The calculated exciton binding energy is much larger than that obtained by Watanabe {\it et al} using a Wannier model to interpret their experimental results and assuming that h-BN is a direct-band-gap semiconductor.Comment: 4 pages, 3 figure

    A theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements

    Get PDF
    We propose a new class of materials, which can be viewed as graphene derivatives involving Group IA or Group VIIA elements, forming what we refer to as graphXene. We show that in several cases large band gaps can be found to open up, whereas in other cases a semimetallic behavior is found. Formation energies indicate that under ambient conditions, sp3^3 and mixed sp2^2/sp3^3 systems will form. The results presented allow us to propose that by careful tuning of the relative concentration of the adsorbed atoms, it should be possible to tune the band gap of graphXene to take any value between 0 and 6.4 eV.Comment: 5 pages, 4 figures. Transferred to PR

    Electron correlations in Mnx_xGa1−x_{1-x}As as seen by resonant electron spectroscopy and dynamical mean field theory

    Get PDF
    After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its origin is still debated, and many doubts are related to the electronic structure. Here we report an experimental and theoretical study of the valence electron spectrum of Mn-doped GaAs. The experimental data are obtained through the differences between off- and on-resonance photo-emission data. The theoretical spectrum is calculated by means of a combination of density-functional theory in the local density approximation and dynamical mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver. Theory is found to accurately reproduce measured data, and illustrates the importance of correlation effects. Our results demonstrate that the Mn states extend over a broad range of energy, including the top of the valence band, and that no impurity band splits off from the valence band edge, while the induced holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure
    • …
    corecore