9 research outputs found

    Neurodevelopmental effects of undernutrition and placental underperfusion in fetal growth restriction rabbit models

    Get PDF
    Introduction: Chronic reduction of oxygen and nutrient delivery to the fetus has been related to neurodevelopmental problems. Placental underperfusion induces a significant reduction in oxygen and nutrient delivery, whereas maternal undernutrition causes mainly nutrient deficiency. A comparison of the neurodevelopmental effects of both situations in pregnant rabbits was performed. Materials and Methods: The placental underperfusion model was induced after uteroplacental vessel ligation at 25 days of pregnancy. The undernutrition model was induced after a reduction of 70% of the basal maternal intake at 22 days of pregnancy. Neurobehavioral tests were applied in the derived offspring at the neonatal period and over the long term. Structural brain differences were evaluated by brain networks obtained from diffusion magnetic resonance imaging. Results: Birth weight was significantly lower in both cases. However, stillbirth was only increased in the placental underperfusion model. Cases from both models presented poorer neurobehavioral performance and network infrastructure, being more pro-nounced in the placental underperfusion model. Discussion: Prenatal insults during the last third of gestation resulted in functional and structural disturbances. The degree of neurodevelopmental impairment and its association with structural brain reorganization seemed to be related to the type of the prenatal insult, showing stronger effects in the placental underperfusion model. (C) 2017 S. Karger AG, Base

    Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy

    Get PDF
    Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity and hypoxia, however, because they share common molecular mechanisms. This leaves open the possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for hypoxia driven by capillary blood flow restriction in ictal neurodegeneration

    Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy

    Get PDF
    Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity and hypoxia, however, because they share common molecular mechanisms. This leaves open the possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for hypoxia driven by capillary blood flow restriction in ictal neurodegeneration

    Neurodevelopmental effects of undernutrition and placental underperfusion in fetal growth restriction rabbit models

    No full text
    Introduction: Chronic reduction of oxygen and nutrient delivery to the fetus has been related to neurodevelopmental problems. Placental underperfusion induces a significant reduction in oxygen and nutrient delivery, whereas maternal undernutrition causes mainly nutrient deficiency. A comparison of the neurodevelopmental effects of both situations in pregnant rabbits was performed. Materials and Methods: The placental underperfusion model was induced after uteroplacental vessel ligation at 25 days of pregnancy. The undernutrition model was induced after a reduction of 70% of the basal maternal intake at 22 days of pregnancy. Neurobehavioral tests were applied in the derived offspring at the neonatal period and over the long term. Structural brain differences were evaluated by brain networks obtained from diffusion magnetic resonance imaging. Results: Birth weight was significantly lower in both cases. However, stillbirth was only increased in the placental underperfusion model. Cases from both models presented poorer neurobehavioral performance and network infrastructure, being more pro-nounced in the placental underperfusion model. Discussion: Prenatal insults during the last third of gestation resulted in functional and structural disturbances. The degree of neurodevelopmental impairment and its association with structural brain reorganization seemed to be related to the type of the prenatal insult, showing stronger effects in the placental underperfusion model. (C) 2017 S. Karger AG, Base
    corecore