56 research outputs found
Current and Emerging Molecular Tests for Human Papillomavirus–Related Neoplasia in the Genomic Era
Laboratory tests have a key role in preventing human papillomavirus (HPV)-driven carcinomas and in guiding therapeutic interventions. An understanding of the virology, immunology, and carcinogenesis of HPV is essential for choosing appropriate diagnostic test modalities and developing new and even more effective cancer prevention strategies. HPV infects basal epithelial cells on multiple surfaces and induces carcinoma primarily in the cervix and the oropharynx. HPV types are stratified as high risk or low risk based on their carcinogenic potential. During oncogenesis, HPV interferes with cell cycle regulation and incites DNA damage responses that thwart apoptosis and enable mutations to accumulate. Such mutations are an adverse effect of innate and adaptive antiviral immune responses that up-regulate DNA-editing enzymes, with natural selection of cells having a chromosomally integrated viral genome lacking expression of viral proteins targeted by the immune system. Infected cancers share a similar mutation signature, reflecting the effect of apolipoprotein B mRNA-editing catalytic polypeptide enzyme DNA-editing enzymes. It is feasible that genomic tests for characteristic mutations or methylation signatures, along with tests for dysregulated HPV gene expression, add value in predicting behavior of premalignant lesions. Furthermore, these tumor markers in cell-free DNA of plasma or body fluids may one day assist in early detection or monitoring cancer burden during treatment
Sarcina ventriculi: A Rare Case of Life-Threatening Perforated Gastric Ulcer and Review of Literature
Sarcina ventriculi is a gram-positive anaerobic bacterium reported rarely in patients with a history of gastrointestinal surgery and delayed gastric emptying. Sarcina has been implicated in the development of gastric ulcers, emphysematous gastritis, and gastric perforation. So far, less than 30 cases of Sarcina isolated from gastric specimens have been reported, including 3 cases associated with life-threatening illness:emphysematous gastritis and gastric perforation. Herein, we report a case of a 58-yearold woman with history of gastric surgery who presented for evaluation of persistent gastric pain and incurable ulcer. She underwent total gastrectomy, and the resected stomach demonstrated a perforated ulcer with the presence of Sarcina microorganisms.We also report a second case of a 56-year-old woman with history of NSAID use who presented with gastric outlet obstruction. The gastric biopsy identified concurrent Helicobacter pylori and Sarcina. Given Sarcina's association with emphysematous gastritis and gastric perforation, its identification on gastric biopsies should be clearly stated in pathology reports and, depending on the clinical scenario, prompt clinicians to add adjunctive antimicrobials to anti-ulcer therapeutic regimens
Quantitative thresholds enable accurate identification of clostridium difficile infection by the luminex xTAG gastrointestinal pathogen panel
Clostridium difficile colonizes the gastrointestinal (GI) tract, resulting in either asymptomatic carriage or a spectrum of diarrheal illness. If clinical suspicion for C. difficile is low, stool samples are often submitted for analysis by multiplex molecular assays capable of detecting multiple GI pathogens, and some institutions do not report this organism due to concerns for high false-positive rates. Since clinical disease correlates with organism burden and molecular assays yield quantitative data, we hypothesized that numerical cutoffs could be utilized to improve the specificity of the Luminex xTAG GI pathogen panel (GPP) for C. difficile infection. Analysis of cotested liquid stool samples (n 1,105) identified a GPP median fluorescence intensity (MFI) value cutoff of 1,200 to be predictive of two-step algorithm (2-SA; 96.4% concordance) and toxin enzyme immunoassay (EIA) positivity. Application of this cutoff to a second cotested data set (n 1,428) yielded 96.5% concordance. To determine test performance characteristics, concordant results were deemed positive or negative, and discordant results were adjudicated via chart review. Test performance characteristics for the MFI cutoff of 150 (standard), MFI cutoff of 1,200, and 2-SA were as follows (respectively): concordance, 95, 96, and 97%; sensitivity, 93, 78, and 90%; specificity, 95, 98, and 98%; positive predictive value, 67, 82, and 81%;, and negative predictive value, 99, 98, and 99%. To capture the high sensitivity for organism detection (MFI of 150) and high specificity for active infection (MFI of 1,200), we developed and applied a reporting algorithm to interpret GPP data from patients (n 563) with clinician orders only for syndromic panel testing, thus enabling accurate reporting of C. difficile for 95% of samples (514 negative and 5 true positives) irrespective of initial clinical suspicion and without the need for additional testing
Targeting Iron Acquisition Blocks Infection with the Fungal Pathogens Aspergillus fumigatus and Fusarium oxysporum
Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal
blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the
cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and
siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize
lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo.
Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice.
By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and
extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron
acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the
cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%.
Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal
growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal
infections
Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing
Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing
A conceptual framework for nomenclatural stability and validity of medically important fungi: a proposed global consensus guideline for fungal name changes supported by ABP, ASM, CLSI, ECMM, ESCMID-EFISG, EUCAST-AFST, FDLC, IDSA, ISHAM, MMSA, and MSGERC
The rapid pace of name changes of medically important fungi is creating challenges for clinical laboratories and clinicians involved in patient care. We describe two sources of name change which have different drivers, at the species versus the genus level. Some suggestions are made here to reduce the number of name changes. We urge taxonomists to provide diagnostic markers of taxonomic novelties. Given the instability of phylogenetic trees due to variable taxon sampling, we advocate to maintain genera at the largest possible size. Reporting of identified species in complexes or series should where possible comprise both the name of the overarching species and that of the molecular sibling, often cryptic species. Because the use of different names for the same species will be unavoidable for many years to come, an open access online database of the names of all medically important fungi, with proper nomenclatural designation and synonymy, is essential. We further recommend that while taxonomic discovery continues, the adaptation of new name changes by clinical laboratories and clinicians be reviewed routinely by a standing committee for validation and stability over time, with reference to an open access database, wherein reasons for changes are listed in a transparent way
Characterization of L-Serine Deaminase and its Potential Role in the Pathogenicity of Pseudomonas aeruginosa
All pathogens require high energetic influxes to counterattack the host immune system and without this energy bacterial infections are easily cleared. This study is an investigation into one highly bioenergetic pathway in Pseudomonas aeruginosa involving the amino acid L-serine and the enzyme L-serine deaminase (L-SD). P. aeruginosa is an opportunistic pathogen causing infections in patients with compromised immune systems as well as patients with cystic fibrosis. Recent evidence has linked L-SD directly to the pathogenicity of several organisms including but not limited to Campylobacter jejuni, Mycobacterium bovis, Streptococcus pyogenes, and Yersinia pestis. We hypothesized that P. aeruginosa L-SD is likely to be critical for its virulence. Genome sequence analysis revealed the presence of two L-SD homo logs encoded by sdaA and sdaB. We analyzed the ability of P. aeruginosa to utilize serine and the role of SdaA and SdaB in serine deamination by comparing mutant strains of sdaA (PAOsdaA) and sdaB (PAOsdaB) with their isogenic parent P. aeruginosa P AO 1. We demonstrated that P. aeruginosa is unable to use serine as a sole carbon source. However, serine utilization is enhanced in the presence of glycine and this glycine-dependent induction of L-SD activity requires the inducer serine. The amino acid leucine was shown to inhibit L-SD activity from both SdaA and SdaB and the net contribution to L-serine deamination by SdaA and SdaB was ascertained at 34% and 66 %, respectively. These results suggest that P. aeruginosa LSD is quite different from the characterized E. coli L-SD that is glycine-independent but leucine-dependent for activation. Growth mutants able to use serine as a sole carbon source were also isolated and in addition, suicide vectors were constructed which allow for selective mutation of the sdaA and sdaB genes on any P. aeruginosa strain of interest. Future studies with a double mutant will reveal the importance of these genes for pathogenicity
- …