164 research outputs found

    Invariant Variation Problems

    Full text link
    The problems in variation here concerned are such as to admit a continuous group (in Lie's sense); the conclusions that emerge from the corresponding differential equations find their most general expression in the theorems formulated in Section 1 and proved in following sections. Concerning these differential equations that arise from problems of variation, far more precise statements can be made than about arbitrary differential equations admitting of a group, which are the subject of Lie's researches. What is to follow, therefore, represents a combination of the methods of the formal calculus of variations with those of Lie's group theory. For special groups and problems in variation, this combination of methods is not new; I may cite Hamel and Herglotz for special finite groups, Lorentz and his pupils (for instance Fokker), Weyl and Klein for special infinite groups. Especially Klein's second Note and the present developments have been mutually influenced by each other, in which regard I may refer to the concluding remarks of Klein's Note.Comment: M. A. Tavel's English translation of Noether's Theorems (1918), reproduced by Frank Y. Wang. Thanks to Lloyd Kannenberg for corrigend

    Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells

    Get PDF
    AbstractEndocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associated genes

    The XMM-Newton Wide-Field Survey in the COSMOS field (XMM-COSMOS): demography and multiwavelength properties of obscured and unobscured luminous AGN

    Get PDF
    We report the final optical identifications of the medium-depth (~60 ksec), contiguous (2 deg^2) XMM-Newton survey of the COSMOS field. XMM-Newton has detected ~800 X-ray sources down to limiting fluxes of ~5x10^{-16}, ~3x10^{-15}, and ~7x10^{-15} erg/cm2/s in the 0.5-2 keV, 2-10 keV and 5-10 keV bands, respectively. The work is complemented by an extensive collection of multi-wavelength data from 24 micron to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for ~50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 (~95%) have IRAC counterparts, and 1394 (~78%) have MIPS 24micron detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of logL_X>44.5 AGN is at z~2. Spectroscopically-identified obscured and unobscured AGN, as well as normal and starforming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of ~150 high redshift (z>1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L_X>10^{44} erg s^{-1}) X-ray luminosity is ~15-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.Comment: ApJ, in press. 59 pages, 14 figures, 2 Tables. A few typos corrected and a reference added. Table 2 is also available at http://www.mpe.mpg.de/XMMCosmos/xmm53_release ; a version of the paper in ApJ format (27 pages) is available at http://www.mpe.mpg.de/XMMCosmos/xmm53_release/brusa_xmmcosmos_optid.pd

    Precision photometric redshift calibration for galaxy-galaxy weak lensing

    Get PDF
    Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy-galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy-galaxy lensing calibration error well below current SDSS statistical error

    Precision photometric redshift calibration for galaxy–galaxy weak lensing

    Get PDF
    Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy–galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy–galaxy lensing calibration error well below current SDSS statistical errors

    Usefulness of Routine Fractional Flow Reserve for Clinical Management of Coronary Artery Disease in Patients With Diabetes

    Get PDF
    Importance: Approximately one-third of patients considered for coronary revascularization have diabetes, which is a major determinant of clinical outcomes, often influencing the choice of the revascularization strategy. The usefulness of fractional flow reserve (FFR) to guide treatment in this population is understudied and has been questioned. Objective: To evaluate the usefulness and rate of major adverse cardiovascular events (MACE) of integrating FFR in management decisions for patients with diabetes who undergo coronary angiography. Design, setting, and participants: This cross-sectional study used data from the PRIME-FFR study derived from the merger of the POST-IT study (Portuguese Study on the Evaluation of FFR-Guided Treatment of Coronary Disease [March 2012-November 2013]) and R3F study (French Study of FFR Integrated Multicenter Registries Implementation of FFR in Routine Practice [October 2008-June 2010]), 2 prospective multicenter registries that shared a common design. A population of all-comers for whom angiography disclosed ambiguous lesions was analyzed for rates, patterns, and outcomes associated with management reclassification, including revascularization deferral, in patients with vs without diabetes. Data analysis was performed from June to August 2018. Main outcomes and measures: Death from any cause, myocardial infarction, or unplanned revascularization (MACE) at 1 year. Results: Among 1983 patients (1503 [77%] male; mean [SD] age, 65 [10] years), 701 had diabetes, and FFR was performed for 1.4 lesions per patient (58.2% of lesions in the left anterior descending artery; mean [SD] stenosis, 56% [11%]; mean [SD] FFR, 0.81 [0.01]). Reclassification by FFR was high and similar in patients with and without diabetes (41.2% vs 37.5%, P = .13), but reclassification from medical treatment to revascularization was more frequent in the former (142 of 342 [41.5%] vs 230 of 730 [31.5%], P = .001). There was no statistical difference between the 1-year rates of MACE in reclassified (9.7%) and nonreclassified patients (12.0%) (P = .37). Among patients with diabetes, FFR-based deferral identified patients with a lower risk of MACE at 12 months (25 of 296 [8.4%]) compared with those undergoing revascularization (47 of 257 [13.1%]) (P = .04), and the rate was of the same magnitude of the observed rate among deferred patients without diabetes (7.9%, P = .87). Status of insulin treatment had no association with outcomes. Patients (6.6% of the population) in whom FFR was disregarded had the highest MACE rates regardless of diabetes status. Conclusions and relevance: Routine integration of FFR for the management of coronary artery disease in patients with diabetes may be associated with a high rate of treatment reclassification. Management strategies guided by FFR, including revascularization deferral, may be useful for patients with diabetes.info:eu-repo/semantics/publishedVersio

    Hypofractionated radiotherapy for prostate cancer

    Get PDF
    In the last few years, hypofractionated external beam radiotherapy has gained increasing popularity for prostate cancer treatment, since sufficient evidence exists that prostate cancer has a low alpha/beta ratio, lower than the one of the surrounding organs at risk and thus there is a potential therapeutic benefit of using larger fractionated single doses. Apart from the therapeutic rationale there are advantages such as saving treatment time and medical resources and thereby improving patient's convenience. While older trials showed unsatisfactory results in both standard and hypofractionated arm due to insufficient radiation doses and non-standard contouring of target volumes, contemporary randomized studies have reported on encouraging results of tumor control mostly without an increase of relevant side effects, especially late toxicity. Aim of this review is to give a detailed analysis of relevant, recently published clinical trials with special focus on rationale for hypofractionation and different therapy settings

    The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco

    Get PDF
    The ER-resident molecular chaperone BiP (binding protein) was overexpressed in soybean. When plants growing in soil were exposed to drought (by reducing or completely withholding watering) the wild-type lines showed a large decrease in leaf water potential and leaf wilting, but the leaves in the transgenic lines did not wilt and exhibited only a small decrease in water potential. During exposure to drought the stomata of the transgenic lines did not close as much as in the wild type, and the rates of photosynthesis and transpiration became less inhibited than in the wild type. These parameters of drought resistance in the BiP overexpressing lines were not associated with a higher level of the osmolytes proline, sucrose, and glucose. It was also not associated with the typical drought-induced increase in root dry weight. Rather, at the end of the drought period, the BiP overexpressing lines had a lower level of the osmolytes and root weight than the wild type. The mRNA abundance of several typical drought-induced genes [NAC2, a seed maturation protein (SMP), a glutathione-S-transferase (GST), antiquitin, and protein disulphide isomerase 3 (PDI-3)] increased in the drought-stressed wild-type plants. Compared with the wild type, the increase in mRNA abundance of these genes was less (in some genes much less) in the BiP overexpressing lines that were exposed to drought. The effect of drought on leaf senescence was investigated in soybean and tobacco. It had previously been reported that tobacco BiP overexpression or repression reduced or accentuated the effects of drought. BiP overexpressing tobacco and soybean showed delayed leaf senescence during drought. BiP antisense tobacco plants, conversely, showed advanced leaf senescence. It is concluded that BiP overexpression confers resistance to drought, through an as yet unknown mechanism that is related to ER functioning. The delay in leaf senescence by BiP overexpression might relate to the absence of the response to drought

    Simple Shared Motifs (SSM) in conserved region of promoters: a new approach to identify co-regulation patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods.</p> <p>Results</p> <p>Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values.</p> <p>Conclusions</p> <p>Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks.</p
    corecore