3,227 research outputs found

    Worry and behaviour at the start of the COVID-19 outbreak: results from three UK surveys (the COVID-19 Rapid Survey of Adherence to Interventions and Responses [CORSAIR] study)

    Get PDF
    We aimed to describe worry and uptake of behaviours that prevent the spread of infection (respiratory and hand hygiene, distancing) in the UK at the start of the COVID-19 outbreak (January and February 2020) and to investigate factors associated with worry and adopting protective behaviours. Three cross-sectional online surveys of UK adults (28 to 30 January, n=2016; 3 to 6 February, n=2002; 10 to 13 February 2020, n=2006) were conducted. We used logistic regressions to investigate associations between outcome measures (worry, respiratory and hand hygiene behaviour, distancing behaviour) and explanatory variables. 19.8% of participants (95% CI 18.8% to 20.8%) were very or extremely worried about COVID-19. People from minoritized ethnic groups were particularly likely to feel worried. 39.9% of participants (95% CI 37.7% to 42.0%) had completed one or more hand or respiratory hygiene behaviours more than usual in the last seven days. Uptake was associated with greater worry, perceived effectiveness of individual behaviours, self-efficacy for engaging in them, and having received more information. 13.7% (95% CI 12.2% to 15.2%) had reduced the number of people they had met. This was associated with greater worry, perceived effectiveness, and self-efficacy. At the start of novel infectious disease outbreaks, communications should emphasise perceived effectiveness of behaviours and ease with which they can be carried out

    Bandit Models of Human Behavior: Reward Processing in Mental Disorders

    Full text link
    Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for multi-armed bandit problem, which extends the standard Thompson Sampling approach to incorporate reward processing biases associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. We demonstrate empirically that the proposed parametric approach can often outperform the baseline Thompson Sampling on a variety of datasets. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions.Comment: Conference on Artificial General Intelligence, AGI-1

    Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ~65% VO2peak in endurance trained men

    Get PDF
    Key points: AMP-activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8–10-fold during ∼120 min of exercise at ∼65% (Formula presented.) in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross-sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% (Formula presented.) in endurance-trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% (Formula presented.) in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism. Abstract: AMP-activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. Indeed, AMPK is activated during exercise and activation of AMPK by 5-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) increases skeletal muscle glucose uptake and fat oxidation. However, we have previously shown that, although AMPK activity increases by 8–10-fold during ∼120 min of exercise at ∼65% (Formula presented.) in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross-sectional study, we examined whether there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% (Formula presented.) in endurance-trained individuals. Eleven untrained (UT; (Formula presented.) = 37.9 ± 5.6 ml.kg−1 min−1) and seven endurance trained (ET; (Formula presented.) = 61.8 ± 2.2 ml.kg−1 min−1) males completed 120 min of cycling exercise at 66 ± 4% (Formula presented.) (UT: 100 ± 21 W; ET: 190 ± 15 W). Muscle biopsies were obtained at rest and following 30 and 120 min of exercise. Muscle glycogen was significantly (P < 0.05) higher before exercise in ET and decreased similarly during exercise in the ET and UT individuals. Exercise significantly increased calculated skeletal muscle free AMP content and more so in the UT individuals. Exercise significantly (P < 0.05) increased skeletal muscle AMPK α2 activity (4-fold), AMPK αThr172 phosphorylation (2-fold) and ACCβ Ser222 phosphorylation (2-fold) in the UT individuals but not in the ET individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% (Formula presented.) in endurance trained men

    Memristive Effects in Oxygenated Amorphous Carbon Nanodevices

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or t-aC, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-COx. Here, we examine the memristive capabilities of nanoscale a-COx devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-COx memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-COx cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.This work was funded by the EU Research & Innovation project CareRAMM, grant no. 30998

    Pairwise comparison matrices and the error-free property of the decision maker

    Get PDF
    Pairwise comparison is a popular assessment method either for deriving criteria-weights or for evaluating alternatives according to a given criterion. In real-world applications consistency of the comparisons rarely happens: intransitivity can occur. The aim of the paper is to discuss the relationship between the consistency of the decision maker—described with the error-free property—and the consistency of the pairwise comparison matrix (PCM). The concept of error-free matrix is used to demonstrate that consistency of the PCM is not a sufficient condition of the error-free property of the decision maker. Informed and uninformed decision makers are defined. In the first stage of an assessment method a consistent or near-consistent matrix should be achieved: detecting, measuring and improving consistency are part of any procedure with both types of decision makers. In the second stage additional information are needed to reveal the decision maker’s real preferences. Interactive questioning procedures are recommended to reach that goal

    Geographic variation in resource dominance-discovery in Brazilian ant communities

    Get PDF
    A predictive framework for the ecology of species invasions requires that we learn what limits successful invaders in their native range. The red imported. re ant (Solenopsis invicta) is invasive in the United States, Puerto Rico, Australia, New Zealand, and China. Solenopsis invicta appears to be a superior competitor in its introduced range, where it can cause the local extirpation of native species, but little is known about its competitive ability in its native range in South America. Here we examine the competitive ability of S. invicta for food resources in three widely separated Brazilian ant communities. Each of these communities contains 20-40 ant species, 8-10 of which were common and frequently interacted with S. invicta. S. invicta at all three sites was attacked by several species-specific phorid parasitoids, and at one site, two other species were attacked by their own specialized parasitoids. We examined interactions in these local communities for evidence that trade-offs among ant species between resource dominance and resource discovery, and between resource dominance and parasitoid vulnerability facilitate local coexistence. The trade-off between resource dominance and resource discovery was strong and significant only at Santa Genebra, where parasitoids had no effect on the outcome of confrontations at resources. At Bonito, parasitoids significantly reduced the ability of S. invicta, which was the top-ranked behavioral dominant, from defending and usurping food resources from subordinate species. In the Pantanal, S. invicta ranked behind three other ant species in a linear hierarchy of behavioral dominance, and lost the majority of its interactions with a fourth more subordinate species, Paratrechina fulva, another invasive species. Parasitoids of S. invicta were uncommon in the Pantanal, and did not affect its low position in the hierarchy relative to the other two sites. Parasitoids, however, did affect the ability of Linepithema angulatum, the top-ranked behavioral dominant in this community, from defending and usurping resources from behavioral subordinates. These results indicate that both interspecific competition and trait-mediated indirect effects of phorid parasitoids affect the ecological success of the red imported fire ant in its native range, but that the relative importance of these factors varies geographically.8971824183

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    A measure of individual role in collective dynamics

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure. We show that dynamical influence measures explicitly how strongly a node's dynamical state affects collective behavior. For critical spreading, dynamical influence targets nodes according to their spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by manipulating a single node.Comment: accepted for publication in Scientific Report

    Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies

    Get PDF
    The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic Müllerian mimicry, thought – but rarely demonstrated – to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change
    • …
    corecore