7 research outputs found
ICE GENESIS: Synergetic Aircraft and Ground-Based Remote Sensing and In Situ Measurements of Snowfall Microphysical Properties
International audienceAn international field experiment took place in the Swiss Jura in January 2021 as a milestone of the European ICE GENESIS project ( www.ice-genesis.eu/ ), which aims to better measure, understand, and model the ice/snow particle properties and mechanisms responsible for icing of rotor-craft and aircraft. The field campaign was designed to collect observations of clouds and snowfall at a prescribed range of temperatures (−10° to +2°C). The suite of in situ and remote sensing instruments included airborne probes and imagers on board a SAFIRE ATR-42 aircraft, able to sample liquid and ice particles from the micron to the millimeter size range, as well as icing sensors and cameras. Two 95 GHz Doppler cloud radars were installed on the SAFIRE ATR-42, while six Doppler weather radars operating at frequencies ranging from 10 to 95 GHz (and one lidar) were ground based. An operational polarimetric weather radar in nearby France (Montancy) complements the coverage. Finally, observations of standard meteorological variables as well as high-resolution pictures of falling snowflakes from a multiangle snowflake camera were collected at the ground level. The campaign showed its full potential during five (multihourly) flights where precipitation was monitored from cloud to ground. The originality of this campaign resides in the targeted specific temperature range for snowfall and in the synchronization between the ground-based remote sensing and the aircraft trajectories designed to maximize the collection of in situ observations within the column above the radar systems
ICE GENESIS: Synergetic Aircraft and Ground-Based Remote Sensing and In Situ Measurements of Snowfall Microphysical Properties
International audienceAn international field experiment took place in the Swiss Jura in January 2021 as a milestone of the European ICE GENESIS project ( www.ice-genesis.eu/ ), which aims to better measure, understand, and model the ice/snow particle properties and mechanisms responsible for icing of rotor-craft and aircraft. The field campaign was designed to collect observations of clouds and snowfall at a prescribed range of temperatures (−10° to +2°C). The suite of in situ and remote sensing instruments included airborne probes and imagers on board a SAFIRE ATR-42 aircraft, able to sample liquid and ice particles from the micron to the millimeter size range, as well as icing sensors and cameras. Two 95 GHz Doppler cloud radars were installed on the SAFIRE ATR-42, while six Doppler weather radars operating at frequencies ranging from 10 to 95 GHz (and one lidar) were ground based. An operational polarimetric weather radar in nearby France (Montancy) complements the coverage. Finally, observations of standard meteorological variables as well as high-resolution pictures of falling snowflakes from a multiangle snowflake camera were collected at the ground level. The campaign showed its full potential during five (multihourly) flights where precipitation was monitored from cloud to ground. The originality of this campaign resides in the targeted specific temperature range for snowfall and in the synchronization between the ground-based remote sensing and the aircraft trajectories designed to maximize the collection of in situ observations within the column above the radar systems