478 research outputs found

    Design Studies for a High Current Bunching System for CLIC Test Facility (CTF3) Drive Beam

    Get PDF
    A bunching system is proposed for the initial stage of CTF3 which consists of one (two) 3 GHz prebunchers and one 3 GHz travelling wave (TW) buncher with variable phase velocities. The electron beam is emitted from a 140 KV DC gun. Since the macropulse beam current (3.5 A) at the exit of the TW buncher is rather high, inside the TW buncher one has to take the beam loading effect into consideration. By using PARMELA, it is shown numerically that the bunching system can provide the bunches whose properties satisfy the design requirement of CTF3. The 0.8 m long TW buncher working at 2pi/3 mode has two phase velocities, 0.75 and 1. The dimensions of the caities in the two phase velocity regions are proposed considering the beam loading effect. The transient beam loading effect and the multibunch transverse instabilities are studied numerically, and it is concluded that higher order mode couplers should be installed in the TW buncher with the loaded quality factor of the dipole mode lower than 80.Comment: 5 figures, presented at the Linear Accelerator Conference 2000, August 2000, US

    Phase stability

    Get PDF

    Longitudinal beam dynamics in circular accelerators

    Get PDF

    An experimental and numerical study of high-frequency Raman scattering in argon gas

    Get PDF
    International audienc

    HIGH PULSED CURRENTS FROM PHOTO-FIELD EMITTERS

    No full text
    Différent microemitters - single or arrays - with various geometries and kinds of material have been irradiated with pulsed laser beams. These emitters working in photo-field emission regime delivered very high intensity electron bunches. Peak intensities as high as some tens of Amps with less than one ns duration have been obtained with U.V. light. New type of microemitters developed in collaboration with BNL have been tested since last year showing the possibility of obtaining charges above 20 nC with low energy laser puises, (εi = 100µJ). The main parameters affecting the choice of these emitters as quantum yield, photocurrent density, electron pulse length, repetition rate and vacuum system level are here discussed. Good performances obtained with these emitters as well as the absence of cesiation make these microemitters interesting candidates for the new generation of linac injectors as well as for multimegawatt RF sources. At LAL, Orsay efforts have been made since three years to develop such electron sources

    A laser triggered electron source for pulsed radiolysis

    Get PDF
    We present the design of a photo-injector based accelerator for pulsed radiolysis applications. This machine is destined to meet the needs of the physical chemistry community at the Universite de Paris XI. A 4 MeV Energy electron pulse of a few picoseconds duration and with a charge in the range of 1 to 10 nC is produced from a Cs/sub 2 /Te photocathode. The photocathode is placed in the half energy spread cell of a 1-1/2 cell, 3 GHz RF gun, whose design is based on the gun used for the drive beam of the CERN CLIC Test facility. A 4 cell "booster" cavity is then used to accelerate the beam to an energy of 9 MeV. The transport system consists of a quadrupole triplet downsteam of the booster, two rectangular, 30 degree bend, dipoles with a pair of quadrupoles between them and a second triplet downstream of the second dipole. Energy dependent path length effects in the two dipoles allow the possibility of magnetic bunch compression depending on the phase-energy correlation of the bunch exiting the booster cavity. The beam envelope and the bunch length have been calculated through the transport line using TRACE-3d and PARMELA. These codes allow us to verify the required beam parameters at the experimental areas. We discuss the adjustment of the optics, aimed at producing the minimum electron bunch length at the experimental targets. (4 refs)

    Intrabeam scattering analysis of measurements at KEK's ATF damping ring

    Get PDF
    We derive a simple relation for estimating the relative emittance growth in x and y due to intrabeam scattering (IBS) in electron storage rings. We show that IBS calculations for the ATF damping ring, when using the formalism of Bjorken-Mtingwa, a modified formalism of Piwinski (where eta squared divided by beta has been replaced by the dispersion invariant), or a simple high-energy approximate formula all give results that agree well. Comparing theory, including the effect of potential well bunch lengthening, with a complete set of ATF steady-state beam size vs. current measurements we find reasonably good agreement for energy spread and horizontal emittance. The measured vertical emittance, however, is larger than theory in both offset (zero current emittance) and slope (emittance change with current). The slope error indicates measurement error and/or additional current-dependent physics at the ATF; the offset error, that the assumed Coulomb log is correct to within a factor of 1.75.Comment: 17 pages, 6 figures, .bbl fil

    Heterotic strings on G_2 orbifolds

    Full text link
    We study compactification of heterotic strings to three dimensions on orbifolds of G_2 holonomy. We consider the standard embedding and show that the gauge group is broken from E_8 x E_8 or SO(32) to F_4 x E_8 or SO(25) respectively. We also compute the spectrum of massless states and compare with the results obtained from reduction of the 10-dimensional fields. Non-standard embeddings are discussed briefly. For type II compactifications we verify that IIB and IIA have equal massless spectrum.Comment: LaTex, 21 page

    Exceptional Flux Compactifications

    Get PDF
    We consider type II (non-)geometric flux backgrounds in the absence of brane sources, and construct their explicit embedding into maximal gauged D=4 supergravity. This enables one to investigate the critical points, mass spectra and gauge groups of such backgrounds. We focus on a class of type IIA geometric vacua and find a novel, non-supersymmetric and stable AdS vacuum in maximal supergravity with a non-semisimple gauge group. Our construction relies on a non-trivial mapping between SL(2) x SO(6,6) fluxes, SU(8) mass spectra and gaugings of E7(7) subgroups.Comment: 51 pages, 2 figures and 4 tables. v3: change of SO(6,6) spinorial conventions, published versio

    Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions

    Full text link
    We consider the reduction of the duality invariant approach to M-theory by a U-duality group valued Scherk-Schwarz twist. The result is to produce potentials for gauged supergravities that are normally associated with non-geometric compactifications. The local symmetry reduces to gauge transformations with the gaugings exactly matching those of the embedding tensor approach to gauged supergravity. Importantly, this approach now includes a nontrivial dependence of the fields on the extra coordinates of the extended space.Comment: 22 pages Latex; v2: typos corrected and references adde
    • …
    corecore