309 research outputs found
Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect
The plastic deformation of dilute alloys is often accompanied by plastic
instabilities due to dynamic strain aging and dislocation interaction. The
repeated breakaway of dislocations from and their recapture by solute atoms
leads to stress serrations and localized strain in the strain controlled
tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present
work, we analyse the stress time series data of the observed PLC effect in the
constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of
strain rates at room temperature. The scaling behaviour of the PLC effect was
studied using two complementary scaling analysis methods: the finite variance
scaling method and the diffusion entropy analysis. From these analyses we could
establish that in the entire span of strain rates, PLC effect showed Levy walk
property. Moreover, the multiscale entropy analysis is carried out on the
stress time series data observed during the PLC effect to quantify the
complexity of the distinct spatiotemporal dynamical regimes. It is shown that
for the static type C band, the entropy is very low for all the scales compared
to the hopping type B and the propagating type A bands. The results are
interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure
Effective dimensionality of the Portevin - Le Chatelier effect
Tensile tests have been carried out by deforming polycrystalline samples of
substitutional Al-2.5%Mg alloy at room temperature at a range of strain rates.
The Portevin - Le Chatelier (PLC) effect was observed. From an analysis of the
experimental stress versus time series data we have inferred that the dynamics
of the PLC effect in a local finite time is controlled by a finite number of
degrees of freedom and this effective dimension becomes reduced with increasing
strain.Comment: 12 pages, 5 figure
Dynamics of stick-slip in peeling of an adhesive tape
We investigate the dynamics of peeling of an adhesive tape subjected to a
constant pull speed. We derive the equations of motion for the angular speed of
the roller tape, the peel angle and the pull force used in earlier
investigations using a Lagrangian. Due to the constraint between the pull
force, peel angle and the peel force, it falls into the category of
differential-algebraic equations requiring an appropriate algorithm for its
numerical solution. Using such a scheme, we show that stick-slip jumps emerge
in a purely dynamical manner. Our detailed numerical study shows that these set
of equations exhibit rich dynamics hitherto not reported. In particular, our
analysis shows that inertia has considerable influence on the nature of the
dynamics. Following studies in the Portevin-Le Chatelier effect, we suggest a
phenomenological peel force function which includes the influence of the pull
speed. This reproduces the decreasing nature of the rupture force with the pull
speed observed in experiments. This rich dynamics is made transparent by using
a set of approximations valid in different regimes of the parameter space. The
approximate solutions capture major features of the exact numerical solutions
and also produce reasonably accurate values for the various quantities of
interest.Comment: 12 pages, 9 figures. Minor modifications as suggested by refere
Dynamics of Crossover from a Chaotic to a Power Law State in Jerky Flow
We study the dynamics of an intriguing crossover from a chaotic to a power
law state as a function of strain rate within the context of a recently
introduced model which reproduces the crossover. While the chaotic regime has a
small set of positive Lyapunov exponents, interestingly, the scaling regime has
a power law distribution of null exponents which also exhibits a power law. The
slow manifold analysis of the model shows that while a large proportion of
dislocations are pinned in the chaotic regime, most of them are pushed to the
threshold of unpinning in the scaling regime, thus providing insight into the
mechanism of crossover.Comment: 5 pages, 3 figures. In print in Phy. Rev. E Rapid Communication
A dynamical approach to the spatiotemporal aspects of the Portevin-Le Chatelier effect: Chaos,turbulence and band propagation
Experimental time series obtained from single and poly-crystals subjected to
a constant strain rate tests report an intriguing dynamical crossover from a
low dimensional chaotic state at medium strain rates to an infinite dimensional
power law state of stress drops at high strain rates. We present results of an
extensive study of all aspects of the PLC effect within the context a model
that reproduces this crossover. A study of the distribution of the Lyapunov
exponents as a function of strain rate shows that it changes from a small set
of positive exponents in the chaotic regime to a dense set of null exponents in
the scaling regime. As the latter feature is similar to the GOY shell model for
turbulence, we compare our results with the GOY model. Interestingly, the null
exponents in our model themselves obey a power law. The configuration of
dislocations is visualized through the slow manifold analysis. This shows that
while a large proportion of dislocations are in the pinned state in the chaotic
regime, most of them are at the threshold of unpinning in the scaling regime.
The model qualitatively reproduces the different types of deformation bands
seen in experiments. At high strain rates where propagating bands are seen, the
model equations are reduced to the Fisher-Kolmogorov equation for propagative
fronts. This shows that the velocity of the bands varies linearly with the
strain rate and inversely with the dislocation density, consistent with the
known experimental results. Thus, this simple dynamical model captures the
complex spatio-temporal features of the PLC effect.Comment: 17 pages, 18 figure
Dynamical scaling and isotope effect in temporal evolution of mesoscopic structure during hydration of cement
The evolution of mesoscopic structure for cement-water mixtures turning into
colloidal gels remains far from being understood. Recent neutron scattering
investigations (Phys. Rev. Lett. 93, 255704 (2004); Phys. Rev. B. 72, 224208
(2005); Phys. Rev. B. 82, 064203 (2010)),, reveal the role of hydrogen bond in
temporal evolution of the mesoscopic structure during hydration of cement which
is the most consumed synthetic material. The present neutron scattering
investigation on hydration of cement with a mixture of light and heavy water
points to incomprehensibility of the temporal evolution of the mesoscopic
structure in terms of earlier observations on hydration with pure light or
heavy water. Unlike in the case of hydration with light water, disagreement has
been observed with the hypothesis of dynamical scaling for hydration of cement
with a mixture of the two types of water. The dynamics of evolution of the
mesoscopic structure has been observed to be nonlinear in regard to the
composition of hydration medium.Comment: 16 Pages, 5 Figure
Relaxation oscillations and negative strain rate sensitivity in the Portevin - Le Chatelier effect
A characteristic feature of the Portevin - Le Chatelier effect or the jerky
flow is the stick-slip nature of stress-strain curves which is believed to
result from the negative strain rate dependence of the flow stress. The latter
is assumed to result from the competition of a few relevant time scales
controlling the dynamics of jerky flow. We address the issue of time scales and
its connection to the negative strain rate sensitivity of the flow stress
within the framework of a model for the jerky flow which is known to reproduce
several experimentally observed features including the negative strain rate
sensitivity of the flow stress. We attempt to understand the above issues by
analyzing the geometry of the slow manifold underlying the relaxational
oscillations in the model. We show that the nature of the relaxational
oscillations is a result of the atypical bent geometry of the slow manifold.
The analysis of the slow manifold structure helps us to understand the time
scales operating in different regions of the slow manifold. Using this
information we are able to establish connection with the strain rate
sensitivity of the flow stress. The analysis also helps us to provide a proper
dynamical interpretation for the negative branch of the strain rate
sensitivity.Comment: 7 figures, To appear in Phys. Rev.
Recommended from our members
Human and preclinical studies of the host-gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health.
OBJECTIVE: Gut microbial products are involved in regulation of host metabolism. In human and experimental studies, we explored the potential role of hippurate, a hepatic phase 2 conjugation product of microbial benzoate, as a marker and mediator of metabolic health. DESIGN: In 271 middle-aged non-diabetic Danish individuals, who were stratified on habitual dietary intake, we applied 1H-nuclear magnetic resonance (NMR) spectroscopy of urine samples and shotgun-sequencing-based metagenomics of the gut microbiome to explore links between the urine level of hippurate, measures of the gut microbiome, dietary fat and markers of metabolic health. In mechanistic experiments with chronic subcutaneous infusion of hippurate to high-fat-diet-fed obese mice, we tested for causality between hippurate and metabolic phenotypes. RESULTS: In the human study, we showed that urine hippurate positively associates with microbial gene richness and functional modules for microbial benzoate biosynthetic pathways, one of which is less prevalent in the Bacteroides 2 enterotype compared with Ruminococcaceae or Prevotella enterotypes. Through dietary stratification, we identify a subset of study participants consuming a diet rich in saturated fat in which urine hippurate concentration, independently of gene richness, accounts for links with metabolic health. In the high-fat-fed mice experiments, we demonstrate causality through chronic infusion of hippurate (20 nmol/day) resulting in improved glucose tolerance and enhanced insulin secretion. CONCLUSION: Our human and experimental studies show that a high urine hippurate concentration is a general marker of metabolic health, and in the context of obesity induced by high-fat diets, hippurate contributes to metabolic improvements, highlighting its potential as a mediator of metabolic health
New apparatus for DTA at 2000 bar: thermodynamic studies on Au, Ag, Al and HTSC oxides
A new DTA (Differential Thermal Analysis) device was designed and installed
in a Hot Isostatic Pressure (HIP) furnace in order to perform high-pressure
thermodynamic investigations up to 2 kbar and 1200C. Thermal analysis can be
carried out in inert or oxidising atmosphere up to p(O2) = 400 bar. The
calibration of the DTA apparatus under pressure was successfully performed
using the melting temperature (Tm) of pure metals (Au, Ag and Al) as standard
calibration references. The thermal properties of these metals have been
studied under pressure. The values of DV (volume variation between liquid and
solid at Tm), ROsm (density of the solid at Tm) and ALPHAm (linear thermal
expansion coefficient at Tm) have been extracted. A very good agreement was
found with the existing literature and new data were added. This HP-DTA
apparatus is very useful for studying the thermodynamics of those systems where
one or more volatile elements are present, such as high TC superconducting
oxides. DTA measurements have been performed on Bi,Pb(2223) tapes up to 2 kbar
under reduced oxygen partial pressure (p(O2) = 0.07 bar). The reaction leading
to the formation of the 2223 phase was found to occur at higher temperatures
when applying pressure: the reaction DTA peak shifted by 49C at 2 kbar compared
to the reaction at 1 bar. This temperature shift is due to the higher stability
of the Pb-rich precursor phases under pressure, as the high isostatic pressure
prevents Pb from evaporating.Comment: 6 figures, 3 tables, Thermodynamics, Thermal property, Bi-2223,
fundamental valu
Temperature Dependence of the Dynamics of Portevin-Le Chatelier Effect in Al-2.5%Mg alloy
Tensile tests were carried out by deforming polycrystalline samples of
Al-2.5%Mg alloy at four different temperatures in an intermediate strain rate
regime of 2x10-4s-1 to 2x10-3s-1. The Portevin-Le Chatelier (PLC) effect was
observed throughout the strain rate and temperature region. The mean cumulative
stress drop magnitude and the mean reloading time exhibit an increasing trend
with temperature which is attributed to the enhanced solute diffusion at higher
temperature. The observed stress-time series data were analyzed using the
nonlinear dynamical methods. From the analyses, we could establish the presence
of deterministic chaos in the PLC effect throughout the temperature regime. The
dynamics goes to higher dimension at a sufficiently high temperature of 425K
but the complexity of the dynamics is not affected by the temperature.Comment: 18 pages, 8 figures; accepted in Met. Mater. Trans.
- …