943 research outputs found
Tracking Labrador Sea Water property signals along the Deep Western Boundary Current
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 5348–5366, doi:10.1002/2017JC012921.Observations of the Deep Western Boundary Current (DWBC) at Line W on the western North Atlantic continental slope southeast of Cape Cod from 1995 to 2014 reveal water mass changes that are consistent with changes in source water properties upstream in the Labrador Sea. This is most evident in the cold, dense, and deep class of Labrador Sea Water (dLSW) that was created and progressively replenished and deepened by recurring winter convection during the severe winters of 1987–1994. The arrival of this record cold, fresh, and low potential vorticity anomaly at Line W lags its formation in the Labrador Sea by 3–7 years. Complementary observations along the path of the DWBC provide further evidence that this anomaly is advected along the boundary and indicate that stirring between the boundary and the interior intensifies south of the Flemish Cap. Finally, the consistency of the data with realistic advective and mixing time scales is assessed using the Waugh and Hall (2005) model framework. The data are found to be best represented by a mean transit time of 5 years from the Labrador Sea to Line W, with a leading order role for both advection by the DWBC and mixing between the boundary flow and interior waters.NSF Grant Numbers: OCE-0726720 , 1332667 , 13328342018-01-0
Dynamics of North Atlantic western boundary currents
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
at the
Massachusetts Institute of Technology
and the
Woods Hole Oceanographic Institution
February 2017The Gulf Stream and Deep Western Boundary Current (DWBC) shape the distribution of
heat and carbon in the North Atlantic, with consequences for global climate. This thesis
employs a combination of theory, observations and models to probe the dynamics of these
two western boundary currents.
First, to diagnose the dynamical balance of the Gulf Stream, a depth-averaged vorticity
budget framework is developed. This framework is applied to observations and a state
estimate in the subtropical North Atlantic. Budget terms indicate a primary balance of vorticity
between wind stress forcing and dissipation, and that the Gulf Stream has a significant
inertial component.
The next chapter weighs in on an ongoing debate over how the deep ocean is filled with
water from high latitude sources. Measurements of the DWBC at Line W, on the continental
slope southeast of New England, reveal water mass changes that are consistent with
changes in the Labrador Sea, one of the sources of deep water thousands of kilometers upstream.
Coherent patterns of change are also found along the path of the DWBC. These
changes are consistent with an advective-diffusive model, which is used to quantify transit
time distributions between the Labrador Sea and Line W. Advection and stirring are both
found to play leading order roles in the propagation of water mass anomalies in the DWBC.
The final study brings the two currents together in a quasi-geostrophic process model,
focusing on the interaction between the Gulf Stream’s northern recirculation gyre and the
continental slope along which the DWBC travels. We demonstrate that the continental
slope restricts the extent of the recirculation gyre and alters its forcing mechanisms. The
recirculation gyre can also merge with the DWBC at depth, and its adjustment is associated
with eddy fluxes that stir the DWBC with the interior. This thesis provides a quantitative
description of the structure of the overturning circulation in the western North Atlantic,
which is an important step towards understanding its role in the climate system.My research was funded by National Science Foundation grants OCE-0241354, OCE-
0726720 and OCE-1332667 as well as a graduate fellowship from the American Meteorological
Society. Support for travel and educational supplies was also provided by the MIT
Houghton Fund and the WHOI Academic Programs Office
A barotropic vorticity budget for the subtropical North Atlantic based on observations
Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2781-2797, doi: 10.1175/JPO-D-19-0111.1.To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.We thank Alonso Hernández-Guerra, M. Dolores Pérez-Hernández, and MarÃa Casanova-Masjoan for providing the inverse model results from Casanova-Masjoan et al. (2018). The A22 section is part of the WOCE/CLIVAR observing effort, with all data available at http://cchdo.ucsd.edu/. We thank Carl Wunsch, Patrick Heimbach, Chris Hill, and Diana Lees Spiegel for their assistance with the ECCO fields. The state estimates were provided by the ECCO Consortium for Estimating the Circulation and Climate of the Ocean funded by the National Oceanographic Partnership Program (NOPP) and can be downloaded at http://www.ecco-group.org/products.htm. The citable URL for the ECCO version 4 release 2 product is http://hdl.handle.net/1721.1/102062. We are grateful to Joseph Pedlosky and Glenn Flierl for their comments on an earlier version of this work. IALB and JMT were supported financially by U.S. NSF Grants OCE-0726720, 1332667, and 1332834. MS was supported by the U.S. NASA Sea Level Change Team (Contract NNX14AJ51G) and through the ECCO Consortium funding via the Jet Propulsion Laboratory. We thank two anonymous reviewers, whose thoughtful comments led to improvements.2020-04-1
The interaction of recirculation gyres and a deep boundary current
Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 573-590, doi:10.1175/JPO-D-17-0206.1.Motivated by the proximity of the Northern Recirculation Gyre and the deep western boundary current in the North Atlantic, an idealized model is used to investigate how recirculation gyres and a deep flow along a topographic slope interact. In this two-layer quasigeostrophic model, an unstable jet imposed in the upper layer generates barotropic recirculation gyres. These are maintained by an eddy-mean balance of potential vorticity (PV) in steady state. The authors show that the topographic slope can constrain the northern recirculation gyre meridionally and that the gyre’s adjustment to the slope leads to increased eddy PV fluxes at the base of the slope. When a deep current is present along the topographic slope in the lower layer, these eddy PV fluxes stir the deep current and recirculation gyre waters. Increased proximity to the slope dampens the eddy growth rate within the unstable jet, altering the geometry of recirculation gyre forcing and leading to a decrease in overall eddy PV fluxes. These mechanisms may shape the circulation in the western North Atlantic, with potential feedbacks on the climate system.We gratefully acknowledge an
AMS graduate fellowship (IALB) and U.S. National
Science Foundation Grants OCE-1332667 and 1332834
(IALB and JMT).2018-09-0
Challenges in Collaborative HRI for Remote Robot Teams
Collaboration between human supervisors and remote teams of robots is highly
challenging, particularly in high-stakes, distant, hazardous locations, such as
off-shore energy platforms. In order for these teams of robots to truly be
beneficial, they need to be trusted to operate autonomously, performing tasks
such as inspection and emergency response, thus reducing the number of
personnel placed in harm's way. As remote robots are generally trusted less
than robots in close-proximity, we present a solution to instil trust in the
operator through a `mediator robot' that can exhibit social skills, alongside
sophisticated visualisation techniques. In this position paper, we present
general challenges and then take a closer look at one challenge in particular,
discussing an initial study, which investigates the relationship between the
level of control the supervisor hands over to the mediator robot and how this
affects their trust. We show that the supervisor is more likely to have higher
trust overall if their initial experience involves handing over control of the
emergency situation to the robotic assistant. We discuss this result, here, as
well as other challenges and interaction techniques for human-robot
collaboration.Comment: 9 pages. Peer reviewed position paper accepted in the CHI 2019
Workshop: The Challenges of Working on Social Robots that Collaborate with
People (SIRCHI2019), ACM CHI Conference on Human Factors in Computing
Systems, May 2019, Glasgow, U
Physiological traits of Penicillium glabrum strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water
International audiencePenicillium glabrum is an ubiquitous fungus distributed world wide. This fungus is a frequent contaminant in the food manufacturing industry. Environmental factors such as temperature, water activity and pH have a great influence on fungal development. In this study, a strain of P. glabrum referenced to as LCP 08.5568, has been isolated from a bottle of aromatised mineral water. The effects of temperature, aw and pH on radial growth rate were assessed on Czapeck Yeast Agar (CYA) medium. Models derived from the cardinal model with inflection (Rosso et al., 1993 An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor. Bio. 162, 447-463) were used to fit the experimental data and determine for each factor, the cardinal parameters (minimum, optimum and maximum). Precise characterisation of the growth conditions for such a fungal contaminant, has an evident interest to understand and to prevent spoilage of food products
Arrival of new great salinity anomaly weakens convection in the Irminger Sea
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biló, T., Straneo, F., Holte, J., & Le Bras, I. Arrival of new great salinity anomaly weakens convection in the Irminger Sea. Geophysical Research Letters, 49(11), (2022): e2022GL098857, https://doi.org/10.1029/2022gl098857.The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.We gratefully acknowledge the US National Science Foundation for funding this work under grants OCE-1258823, OCE-1756272, OCE-1948335, and OCE-2038481
- …