10,347 research outputs found

    Atomic position localization via dual measurement

    Get PDF
    We study localization of atomic position when a three-level atom interacts with a quantized standing-wave field in the Ramsey interferometer setup. Both the field quadrature amplitude and the atomic internal state are measured to obtain the atomic position information. It is found that this dual measurement scheme produces an interference pattern superimposed on a diffraction-like pattern in the atomic position distribution, where the former pattern originates from the state-selective measurement and the latter from the field measurement. The present scheme results in a better resolution in the position localization than the field-alone measurement schemes. We also discuss the measurement-correlated mechanical action of the standing-wave field on the atom in the light of Popper's test.Comment: 6.5 pages and 5 figure

    Maximum Likelihood Estimator for Hidden Markov Models in continuous time

    Full text link
    The paper studies large sample asymptotic properties of the Maximum Likelihood Estimator (MLE) for the parameter of a continuous time Markov chain, observed in white noise. Using the method of weak convergence of likelihoods due to I.Ibragimov and R.Khasminskii, consistency, asymptotic normality and convergence of moments are established for MLE under certain strong ergodicity conditions of the chain.Comment: Warning: due to a flaw in the publishing process, some of the references in the published version of the article are confuse

    A voltage electrical distance application for power system load shedding considering the primary and secondary generator controls

    Get PDF
    This paper proposes a method for determining location and calculating the minimum amount of power load needed to shed in order to recover the frequency back to the allowable range. Based on the consideration of the primary control of the turbine governor and the reserve power of the generators for secondary control, the minimum amount of load shedding was calculated in order to recover the frequency of the power system. Computation and analysis of the voltage electrical distance between the outage generator and the loads to prioritize distribution of the amount power load shedding at load bus positions. The nearer the load bus from the outage generator is, the higher the amount of load shedding will shed and vice versa. With this technique, a large amount of load shedding could be avoided, hence, saved from economic losses, and customer service interruption. The effectiveness of the proposed method tested on the IEEE 37 bus 9 generators power system standard has demonstrated the effectiveness of this method

    Accuracy Enhancement of Electromagnetic Side-Channel Attacks on Computer Monitors

    Get PDF
    The 13th International Conference on Availability, Reliability and Security (ARES 2018), Hamburg, Germany, 27- 30 2018Electromagnetic noise emitted from running computer displays modulates information about the picture frames being displayed on screen. Attacks have been demonstrated on eavesdropping computer displays by utilising these emissions as a side-channel vector. The accuracy of reconstructing a screen image depends on the emission sampling rate and bandwidth of the attackers signal acquisition hardware. The cost of radio frequency acquisition hardware increases with increased supported frequency range and bandwidth. A number of enthusiast-level, affordable software defined radio equipment solutions are currently available facilitating a number of radio-focused attacks at a more reasonable price point. This work investigates three accuracy influencing factors, other than the sample rate and bandwidth, namely noise removal, image blending, and image quality adjustments, that affect the accuracy of monitor image reconstruction through electromagnetic side-channel attacks

    Electromagnetic side-channel attacks: Potential for progressing hindered digital forensic analysis

    Get PDF
    ISSTA/ECOOP 2018 Workshops, Amsterdam, The Netherlands, 15-21 July 2018Digital forensics is fast-growing field involving the discovery and analysis of digital evidence acquired from electronic devices to assist investigations for law enforcement. Traditional digital forensic investigative approaches are often hampered by the data contained on these devices being encrypted. Furthermore, the increasing use of IoT devices with limited standardisation makes it difficult to analyse them with traditional techniques. This paper argues that electromagnetic side-channel analysis has significant potential to progress investigations obstructed by data encryption. Several potential avenues towards this goal are discussed

    EMvidence: A Framework for Digital Evidence Acquisition from IoT Devices through Electromagnetic Side-Channel Analysis

    Get PDF
    EM side-channel analysis (EM-SCA) is a branch in information security where the unintentional electromagnetic (EM) emissions from computing devices. This has been used for various purposes including software behaviour detection, software modification detection, malicious software identification, and data extraction. The possibility of applying EM-SCA in digital forensic investigation scenarios involving IoT devices has been proposed recently. When it is difficult or impossible to acquire forensic evidence from an IoT device, observing EM emissions of the device can provide valuable information to an investigator. This work addresses the challenge of making EM-SCA a practical reality to digital forensic investigators by introducing a software framework called EMvidence. The framework is designed to facilitate extensibility through an EM plug-in model

    Application of AHP algorithm on power distribution of load shedding in island microgrid

    Get PDF
    This paper proposes a method of load shedding in a microgrid system operated in an Island Mode, which is disconnected with the main power grid and balanced loss of the electrical power. This proposed method calculates the minimum value of the shed power with reference to renewable energy sources such as wind power generator, solar energy and the ability to control the frequency of the generator to restore the frequency to the allowable range and reduce the amount of load that needs to be shed. Computing the load importance factor (LIF) using AHP algorithm supports to determine the order of which load to be shed. The damaged outcome of load shedding, thus, will be noticeably reduced. The experimental results of this proposed method is demonstrated by simulating on IEEE 16-Bus microgrid system with six power sources

    Electric-field controlled spin reversal in a quantum dot with ferromagnetic contacts

    Get PDF
    Manipulation of the spin-states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin-filters, spin-transistors and single-spin memory as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin-polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the properties of the quantum dot become directly spin-dependent and it has been demonstrated that the ferromagnetic electrodes induce a local exchange-field which polarizes the localized spin in the absence of any external fields. Here we report on the experimental realization of this tunneling-induced spin-splitting in a carbon nanotube quantum dot coupled to ferromagnetic nickel-electrodes. We study the intermediate coupling regime in which single-electron states remain well defined, but with sufficiently good tunnel-contacts to give rise to a sizable exchange-field. Since charge transport in this regime is dominated by the Kondo-effect, we can utilize this sharp many-body resonance to read off the local spin-polarization from the measured bias-spectroscopy. We show that the exchange-field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo-resonance, and we demonstrate that the exchange-field itself, and hence the local spin-polarization, can be tuned and reversed merely by tuning the gate-voltage. This demonstrates a very direct electrical control over the spin-state of a quantum dot which, in contrast to an applied magnetic field, allows for rapid spin-reversal with a very localized addressing.Comment: 19 pages, 11 figure

    Cutting Through the Emissions: Feature Selection from Electromagnetic Side-Channel Data for Activity Detection

    Get PDF
    Electromagnetic side-channel analysis (EM-SCA) has been used as a window to eavesdrop on computing devices for information security purposes. It has recently been proposed to use as a digital evidence acquisition method in forensic investigation scenarios as well. The massive amount of data produced by EM signal acquisition devices makes it difficult to process in real-time making on-site EM-SCA infeasible. Uncertainty surrounds the precise information leaking frequency channel demanding the acquisition of signals over a wide bandwidth. As a consequence, investigators are left with a large number of potential frequency channels to be inspected; with many not containing any useful information leakages. The identification of a small subset of frequency channels that leak a sufficient amount of information can significantly boost the performance enabling real-time analysis. This work presents a systematic methodology to identify information leaking frequency channels from high dimensional EM data with the help of multiple filtering techniques and machine learning algorithms. The evaluations show that it is possible to narrow down the number of frequency channels from over 20,000 to less than a hundred (81 channels). The experiments presented show an accuracy of 0.9315 when all the 20,000 channels are used, an accuracy of 0.9395 with the highest 500 channels after calculating the variance between the average value of each class, and an accuracy of 0.9047 when the best 81 channels according to Recursive Feature Elimination are considered
    corecore