4 research outputs found
Column bioleaching of fluoride-containing secondary copper sulfide ores : experiments with Sulfobacillus thermosulfidooxidans.
Bioleaching is a mature technology, which is widely employed commercially in the leaching of primary sources of metals (ores, concentrates, and mine residues). The current work discussed the effects of aluminum sulfate additions to the growth medium, PLS recirculation and bleeding on the column bioleaching of secondary copper sulfide ores with a significant content of fluoride-containing minerals. Fluoride is toxic to bacteria at the pH of bioleaching but its toxicity may be overcome in the presence of soluble aluminum and ferric iron. Therefore, experiments were carried out in 10 ? 100 cm height aerated columns, loaded with 10 kg of crushed and agglomerated copper ore and inoculated with Sulfobacillus thermosulfidooxidans. Initially, fluoride concentrations of up to 2.5 g/L in the pregnant leach solution were observed due to the fast dissolution of fluoride-bearing minerals. Aluminum was added to the leaching solution to reduce the Al/F ratio so that the concentration of HF (the main toxic species) was decreased, but while the total fluoride concentration was higher than that of aluminum, the bacterial population as low. Therefore, the current work emphasizes that it is possible to set up conditions to enable bioleaching even at high fluoride concentrations. Following this approach, copper extractions above 90% were achieved for a H2SO4 consumption ranging from 128.8 to 206.1 Kg/ton
Mineralocorticoid receptor antagonists lead to increased adenosine bioavailability and modulate contractile cardiac parameters.
Activation of mineralocorticoid receptor antagonists (MRAs) is cardioprotective; however, this property is lost upon blockade or inactivation of adenosine (ADO) receptor A2b. In this study, we investigated whether the effects of MRAs are mediated by an interaction between cardioprotective ADO receptors A1 and A3. Spironolactone (SPI) or eplerenone (EPL) increased ADO levels in the plasma of treated animals compared to control animals. SPI or EPL increased the protein and activity levels of ecto-5?-nucleotidase (NT5E), an enzyme that synthesizes ADO, compared to control. The levels of ADO deaminase (ADA), which degrades ADO, were not affected by SPI or EPL; however, the activity of ADA was reduced in SPI-treated rats compared to control. Using an isolated cardiomyocyte model, we found inotropic and chronotropic effects, and increased calcium transient [Ca2+]i in cells treated with ADO receptor A1 or A3 antagonists compared to control groups. Upon co-treatment with MRAs, EPL and SPI fully and partially reverted the effects of receptor A1 or A3 antagonism, respectively. Collectively, MRAs in vivo lead to increased ADO bioavailability. In vitro, the rapid effects of SPI and EPL are mediated by an interaction between ADO receptors A1 and A3