55 research outputs found

    Switching Gear: Law Approximation in Ukraine After the Application for EU Membership

    Get PDF
    In the wake of a full-scale Russian invasion, Ukraine applied for EU membership on 28 February 2022. In a matter of months, it was formally confirmed by the European Council as a candidate country. This has had a plethora of consequences; one of them is the obligation to approximate its national law with the EU acquis in its entirety. Unless there is a change of paradigm in EU pre-accession policy, transitional arrangements are strictly the exception to the rule, and therefore the law approximation effort has to go way beyond existing commitments under the EU-Ukraine Association Agreement, the Energy Community Treaty, and the Civil Aviation Agreement. Such switching of gear in the law approximation process comes with additional layers of complexity. For instance, compliance with the horizontal provisions of the Treaty on the Functioning of the European Union governing freedoms of the internal market requires comprehensive screening of national law before any legislative changes are made. Furthermore, law approximation with EU legal acts which can only apply when a country becomes a Member State must be carefully planned and timed. The legal system must be ready to accommodate EU law, with all the principles governing enforcement, including the direct application of EU regulations. While this is all doable, it must be handled with care, especially in a country whose economy and society at large have been shattered by war

    Sex and flowers: testing the resource-dependent selection hypothesis for flower sex allocation

    Get PDF
    Context: Monoecious plants can adjust their proportional investment in male and female flowers to maximise reproductive fitness. The female reproductive function (seeds) often has greater resource costs than the male (pollen). Larger plants are generally thought to have greater resource availability and should have a female biased sex ratio, referred to as the size-dependent selection hypothesis. However, empirical tests of this hypothesis have found mixed support. This may be because size alone is not always a reliable proximate value for resource availability, which can be influenced by other abiotic factors. Aims: Breynia oblongifolia (Phyllanthaceae) is a perennial monoecious plant with unisexual moth-pollinated flowers from eastern Australia. Fruit production in Breynia is heavily influenced by rainfall, which is highly variable. We hypothesised that where soil moisture limits female function, Breynia would produce more male flowers (i.e. resource-dependent selection). Methods: We used a multi-year observational dataset to look for evidence of resource-dependent flower sex ratios in a wild population and conducted a manipulative glasshouse experiment to test alternative hypotheses for flower sex selection. Key results: In both our manipulative glasshouse experiment and observed wild population, decreasing soil water content resulted in higher proportions of male flowers, supporting the resource-dependent sex selection hypothesis. Conclusions: Soil moisture influences flower sex ratios but plant size does not. Implications: Future studies should not assume that height equates to resource wealth, as this is often overly simplistic and ignores the potential for key resources, like soil moisture or light, to fluctuate

    The roles of divergent and parallel molecular evolution contributing to thermal adaptive strategies in trees

    Get PDF
    Local adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting ‘local’ temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels. The link between gene expression and traits markedly differed between species. Divergent evolution was the dominant pattern driving adaptation (91% of all significant genes); but overlapping gene (homologous) responses were dependent on the determining factor (plastic, adaptive or genotype by environment interaction). Ninety-eight percent of the plastic homologs were similarly regulated, while 50% of the adaptive homologs and 100% of the interaction homologs were antagonistical. Parallel evolution for the adaptive effect in homologous genes was greater than expected but not in favour of divergent evolution. Heat shock proteins for E. grandis were almost entirely driven by adaptation, and plasticity in E. tereticornis. These results suggest divergent molecular evolutionary solutions dominated the adaptive mechanisms among species, even in similar ecological circumstances. Suggesting that tree species with overlapping distributions are unlikely to equally persist in the future

    Sugar sensing responses to low and high light in leaves of the C4 model grass Setaria viridis

    Get PDF
    Although sugar regulate photosynthesis, the signalling pathways underlying this process remain elusive, especially for C4 crops. To address this knowledge gap and identify potential candidate genes, we treated Setaria viridis (C4 model) plants acclimated to medium light intensity (ML, 500 µmol m-2 s-1) with low (LL, 50 µmol m-2 s-1) or high (HL, 1000 µmol m-2 s-1) light for 4 days and observed the consequences on carbon metabolism and the transcriptome of source leaves. LL impaired photosynthesis and reduced leaf content of signalling sugars (glucose, sucrose and trehalose-6-phosphate). Contrastingly, HL strongly induced sugar accumulation without repressing photosynthesis. LL more profoundly impacted leaf transcriptome, including photosynthetic genes. LL and HL contrastingly altered the expression of HXK and SnRK1 sugar sensors and trehalose pathway genes. The expression of key target genes of HXK and SnRK1 were affected by LL and sugar depletion, while surprisingly HL and strong sugar accumulation only slightly repressed the SnRK1 signalling pathway. In conclusion, we demonstrate that LL profoundly impacted photosynthesis and the transcriptome of S. viridis source leaves, while HL altered sugar levels more than LL. We also present the first evidence that sugar signalling pathways in C4 source leaves may respond to light intensity and sugar accumulation differently to C3 source leaves

    Sugar sensing responses to low and high light in leaves of the C4 model grass Setaria viridis

    Get PDF
    Although sugar regulate photosynthesis, the signalling pathways underlying this process remain elusive, especially for C4 crops. To address this knowledge gap and identify potential candidate genes, we treated Setaria viridis (C4 model) plants acclimated to medium light intensity (ML, 500 µmol m-2 s-1) with low (LL, 50 µmol m-2 s-1) or high (HL, 1000 µmol m-2 s-1) light for 4 days and observed the consequences on carbon metabolism and the transcriptome of source leaves. LL impaired photosynthesis and reduced leaf content of signalling sugars (glucose, sucrose and trehalose-6-phosphate). Contrastingly, HL strongly induced sugar accumulation without repressing photosynthesis. LL more profoundly impacted leaf transcriptome, including photosynthetic genes. LL and HL contrastingly altered the expression of HXK and SnRK1 sugar sensors and trehalose pathway genes. The expression of key target genes of HXK and SnRK1 were affected by LL and sugar depletion, while surprisingly HL and strong sugar accumulation only slightly repressed the SnRK1 signalling pathway. In conclusion, we demonstrate that LL profoundly impacted photosynthesis and the transcriptome of S. viridis source leaves, while HL altered sugar levels more than LL. We also present the first evidence that sugar signalling pathways in C4 source leaves may respond to light intensity and sugar accumulation differently to C3 source leave

    Osteo-cise: Strong Bones for Life: protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Get PDF
    Background : Osteoporosis affects over 220 million people worldwide, and currently there is no \u27cure\u27 for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods : The \u27Osteo-cise: Strong Bones for Life\u27 study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function, and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged 60 years or above will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month \u27research to practise\u27 translational phase. Participants will be randomly assigned to either the \u27Osteo-cise\u27 intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test). Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand), falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion : The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture.<br /
    corecore