1,968 research outputs found
Failure of mean-field approach in out-of-equilibrium Anderson model
To explore the limitations of the mean field approximation, frequently used
in \textit{ab initio} molecular electronics calculations, we study an
out-of-equilibrium Anderson impurity model in a scattering formalism. We find
regions in the parameter space where both magnetic and non-magnetic solutions
are stable. We also observe a hysteresis in the non-equilibrium magnetization
and current as a function of the applied bias voltage. The mean field method
also predicts incorrectly local moment formation for large biases and a spin
polarized current, and unphysical kinks appear in various physical quantities.
The mean field approximation thus fails in every region where it predicts local
moment formation.Comment: 5 pages, 5 figure
Non-equilibrium transport theory of the singlet-triplet transition: perturbative approach
We use a simple iterative perturbation theory to study the singlet-triplet
(ST) transition in lateral and vertical quantum dots, modeled by the
non-equilibrium two-level Anderson model. To a great surprise, the region of
stable perturbation theory extends to relatively strong interactions, and this
simple approach is able to reproduce all experimentally-observed features of
the ST transition, including the formation of a dip in the differential
conductance of a lateral dot indicative of the two-stage Kondo effect, or the
maximum in the linear conductance around the transition point. Choosing the
right starting point to the perturbation theory is, however, crucial to obtain
reliable and meaningful results
Ab-initio spin dynamics applied to nanoparticles: canted magnetism of a finite Co chain along a Pt(111) surface step edge
In order to search for the magnetic ground state of surface nanostructures we
extended first principles adiabatic spin dynamics to the case of fully
relativistic electron scattering. Our method relies on a constrained density
functional theory whereby the evolution of the orientations of the spin-moments
results from a semi-classical Landau-Lifshitz equation. This approach is
applied to a study of the ground state of a finite Co chain placed along a step
edge of a Pt(111) surface. As far as the ground state spin orientation is
concerned we obtain excellent agreement with the experiment. Furthermore we
observe noncollinearity of the atom-resolved spin and orbital moments. In terms
of magnetic force theorem calculations we also demonstrate how a reduction of
symmetry leads to the existence of canted magnetic states.Comment: 4 pages, ReVTeX + 3 figures (Encapsulated Postscript), submitted to
PR
Theory of anisotropic Rashba splitting of surface states
We investigate the surface Rashba effect for a surface of reduced in-plane
symmetry. Formulating a k.p perturbation theory, we show that the Rashba
splitting is anisotropic, in agreement with symmetry-based considerations. We
show that the anisotropic Rashba splitting is due to the admixture of bulk
states of different symmetry to the surface state, and it cannot be explained
within the standard theoretical picture supposing just a normal-to-surface
variation of the crystal potential. Performing relativistic ab initio
calculations we find a remarkably large Rashba anisotropy for an
unreconstructed Au(110) surface that is in the experimentally accessible range.Comment: 4 pages, 5 figure
Ab initio study of canted magnetism of finite atomic chains at surfaces
By using ab initio methods on different levels we study the magnetic ground
state of (finite) atomic wires deposited on metallic surfaces. A
phenomenological model based on symmetry arguments suggests that the
magnetization of a ferromagnetic wire is aligned either normal to the wire and,
generally, tilted with respect to the surface normal or parallel to the wire.
From a first principles point of view, this simple model can be best related
to the so--called magnetic force theorem calculations being often used to
explore magnetic anisotropy energies of bulk and surface systems. The second
theoretical approach we use to search for the canted magnetic ground state is
first principles adiabatic spin dynamics extended to the case of fully
relativistic electron scattering. First, for the case of two adjacent Fe atoms
an a Cu(111) surface we demonstrate that the reduction of the surface symmetry
can indeed lead to canted magnetism. The anisotropy constants and consequently
the ground state magnetization direction are very sensitive to the position of
the dimer with respect to the surface. We also performed calculations for a
seven--atom Co chain placed along a step edge of a Pt(111) surface. As far as
the ground state spin orientation is concerned we obtain excellent agreement
with experiment. Moreover, the magnetic ground state turns out to be slightly
noncollinear.Comment: 8 pages, 5 figures; presented on the International Conference on
Nanospintronics Design and Realizations, Kyoto, Japan, May 2004; to appear in
J. Phys.: Cond. Matte
Magnetic properties of Quantum Corrals from first principles calculations
We present calculations for electronic and magnetic properties of surface
states confined by a circular quantum corral built of magnetic adatoms (Fe) on
a Cu(111) surface. We show the oscillations of charge and magnetization
densities within the corral and the possibility of the appearance of
spin--polarized states. In order to classify the peaks in the calculated
density of states with orbital quantum numbers we analyzed the problem in terms
of a simple quantum mechanical circular well model. This model is also used to
estimate the behaviour of the magnetization and energy with respect to the
radius of the circular corral. The calculations are performed fully
relativistically using the embedding technique within the
Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue
on 'Theory and Simulation of Nanostructures
Magnetism in systems with various dimensionality: A comparison between Fe and Co
A systematic ab initio study is performed for the spin and orbital moments
and for the validity of the sum rules for x-ray magnetic circular dichroism for
Fe systems with various dimensionality (bulk, Pt-supported monolayers and
monatomic wires, free-standing monolayers and monatomic wires). Qualitatively,
the results are similar to those for the respective Co systems, with the main
difference that for the monatomic Fe wires the term in the spin sum rule
is much larger than for the Co wires. The spin and orbital moments induced in
the Pt substrate are also discussed.Comment: 4 page
Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations
We analyze the spontaneous magnetization reversal of supported monoatomic
chains of finite length due to thermal fluctuations via atomistic spin-dynamics
simulations. Our approach is based on the integration of the Landau-Lifshitz
equation of motion of a classical spin Hamiltonian at the presence of
stochastic forces. The associated magnetization lifetime is found to obey an
Arrhenius law with an activation barrier equal to the domain wall energy in the
chain. For chains longer than one domain-wall width, the reversal is initiated
by nucleation of a reversed magnetization domain primarily at the chain edge
followed by a subsequent propagation of the domain wall to the other edge in a
random-walk fashion. This results in a linear dependence of the lifetime on the
chain length, if the magnetization correlation length is not exceeded. We
studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial
anisotropy leads to a reduction of the magnetization lifetime due to a higher
reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi
- …