10 research outputs found
Hispanic Ethnicity and Mortality Among Critically Ill Patients With Covid-19
BACKGROUND: Hispanic persons living in the United States (U.S.) are at higher risk of infection and death from coronavirus disease 2019 (COVID-19) compared with non-Hispanic persons. Whether this disparity exists among critically ill patients with COVID-19 is unknown.
OBJECTIVE: To evaluate ethnic disparities in mortality among critically ill adults with COVID-19 enrolled in the Study of the Treatment and Outcomes in Critically Ill Patients with COVID-19 (STOP-COVID).
METHODS: Multicenter cohort study of adults with laboratory-confirmed COVID-19 admitted to intensive care units (ICU) at 67 U.S. hospitals from March 4 to May 9, 2020. Multilevel logistic regression was used to evaluate 28-day mortality across racial/ethnic groups.
RESULTS: A total of 2153 patients were included (994 [46.2%] Hispanic and 1159 [53.8%] non-Hispanic White). The median (IQR) age was 62 (51-71) years (non-Hispanic White, 66 [57-74] years; Hispanic, 56 [46-67] years), and 1462 (67.9%) were men. Compared with non-Hispanic White patients, Hispanic patients were younger; were less likely to have hypertension, chronic obstructive pulmonary disease, coronary artery disease, or heart failure; and had longer duration of symptoms prior to ICU admission. During median (IQR) follow-up of 14 (7-24) days, 785 patients (36.5%) died. In analyses adjusted for age, sex, clinical characteristics, and hospital size, Hispanic patients had higher odds of death compared with non-Hispanic White patients (OR, 1.44; 95% CI, 1.12-1.84).
CONCLUSIONS: Among critically ill adults with COVID-19, Hispanic patients were more likely to die than non-Hispanic White patients, even though they were younger and had lower comorbidity burden. This finding highlights the need to provide earlier access to care to Hispanic individuals with COVID-19, especially given our finding of longer duration of symptoms prior to ICU admission among Hispanic patients. In addition, there is a critical need to address ongoing disparities in post hospital discharge care for patients with COVID-19
Collateral circulation: Past and present
Following an arterial occlusion outward remodeling of pre-existent inter-connecting arterioles occurs by proliferation of vascular smooth muscle and endothelial cells. This is initiated by deformation of the endothelial cells through increased pulsatile fluid shear stress (FSS) caused by the steep pressure gradient between the high pre-occlusive and the very low post-occlusive pressure regions that are interconnected by collateral vessels. Shear stress leads to the activation and expression of all NOS isoforms and NO production, followed by endothelial VEGF secretion, which induces MCP-1 synthesis in endothelium and in the smooth muscle of the media. This leads to attraction and activation of monocytes and T-cells into the adventitial space (peripheral collateral vessels) or attachment of these cells to the endothelium (coronary collaterals). Mononuclear cells produce proteases and growth factors to digest the extra-cellular scaffold and allow motility and provide space for the new cells. They also produce NO from iNOS, which is essential for arteriogenesis. The bulk of new tissue production is carried by the smooth muscles of the media, which transform their phenotype from a contractile into a synthetic and proliferative one. Important roles are played by actin binding proteins like ABRA, cofilin, and thymosin beta 4 which determine actin polymerization and maturation. Integrins and connexins are markedly up-regulated. A key role in this concerted action which leads to a 2-to-20 fold increase in vascular diameter, depending on species size (mouse versus human) are the transcription factors AP-1, egr-1, carp, ets, by the Rho pathway and by the Mitogen Activated Kinases ERK-1 and -2. In spite of the enormous increase in tissue mass (up to 50-fold) the degree of functional restoration of blood flow capacity is incomplete and ends at 30% of maximal conductance (coronary) and 40% in the vascular periphery. The process of arteriogenesis can be drastically stimulated by increases in FSS (arterio-venous fistulas) and can be completely blocked by inhibition of NO production, by pharmacological blockade of VEGF-A and by the inhibition of the Rho-pathway. Pharmacological stimulation of arteriogenesis, important for the treatment of arterial occlusive diseases, seems feasible with NO donors
Recommended from our members
Association of Surge Conditions with Mortality Among Critically Ill Patients with COVID-19
To determine whether surge conditions were associated with increased mortality.
Multicenter cohort study.
U.S. ICUs participating in STOP-COVID.
Consecutive adults with COVID-19 admitted to participating ICUs between March 4 and July 1, 2020.
None.
The main outcome was 28-day in-hospital mortality. To assess the association between admission to an ICU during a surge period and mortality, we used two different strategies: (1) an inverse probability weighted difference-in-differences model limited to appropriately matched surge and non-surge patients and (2) a meta-regression of 50 multivariable difference-in-differences models (each based on sets of randomly matched surge- and non-surge hospitals). In the first analysis, we considered a single surge period for the cohort (March 23 - May 6). In the second, each surge hospital had its own surge period (which was compared to the same time periods in matched non-surge hospitals).Our cohort consisted of 4342 ICU patients (average age 60.8 [sd 14.8], 63.5% men) in 53 U.S. hospitals. Of these, 13 hospitals encountered surge conditions. In analysis 1, the increase in mortality seen during surge was not statistically significant (odds ratio [95% CI]: 1.30 [0.47-3.58], p = .6). In analysis 2, surge was associated with an increased odds of death (odds ratio 1.39 [95% CI, 1.34-1.43], p < .001).
Admission to an ICU with COVID-19 in a hospital that is experiencing surge conditions may be associated with an increased odds of death. Given the high incidence of COVID-19, such increases would translate into substantial excess mortality
Recommended from our members
Lung Function in Women With and Without Human Immunodeficiency Virus
BackgroundPrior studies have found that human immunodeficiency virus (HIV) infection is associated with impaired lung function and increased risk of chronic lung disease, but few have included large numbers of women. In this study, we investigate whether HIV infection is associated with differences in lung function in women.MethodsThis was a cross-sectional analysis of participants in the Women's Interagency HIV Study, a racially and ethnically diverse multicenter cohort of women with and without HIV. In 2018-2019, participants at 9 clinical sites were invited to perform spirometry. Single-breath diffusing capacity for carbon monoxide (DLCO) was also measured at selected sites. The primary outcomes were the post-bronchodilator forced expiratory volume in 1 second (FEV1) and DLCO. Multivariable regression modeling was used to analyze the association of HIV infection and lung function outcomes after adjustment for confounding exposures.ResultsFEV1 measurements from 1489 women (1062 with HIV, 427 without HIV) and DLCO measurements from 671 women (463 with HIV, 208 without HIV) met standards for quality and reproducibility. There was no significant difference in FEV1 between women with and without HIV. Women with HIV had lower DLCO measurements (adjusted difference, -0.73 mL/min/mm Hg; 95% confidence interval, -1.33 to -.14). Among women with HIV, lower nadir CD4 + cell counts and hepatitis C virus infection were associated with lower DLCO measurements.ConclusionsHIV was associated with impaired respiratory gas exchange in women. Among women with HIV, lower nadir CD4 + cell counts and hepatitis C infection were associated with decreased respiratory gas exchange
Recommended from our members
Lung Function in Women With and Without Human Immunodeficiency Virus
Background Prior studies have found that human immunodeficiency virus (HIV) infection is associated with impaired lung function and increased risk of chronic lung disease, but few have included large numbers of women. In this study, we investigate whether HIV infection is associated with differences in lung function in women. Methods This was a cross-sectional analysis of participants in the Women's Interagency HIV Study, a racially and ethnically diverse multicenter cohort of women with and without HIV. In 2018-2019, participants at 9 clinical sites were invited to perform spirometry. Single-breath diffusing capacity for carbon monoxide (DLCO) was also measured at selected sites. The primary outcomes were the post-bronchodilator forced expiratory volume in 1 second (FEV1) and DLCO. Multivariable regression modeling was used to analyze the association of HIV infection and lung function outcomes after adjustment for confounding exposures. Results FEV1 measurements from 1489 women (1062 with HIV, 427 without HIV) and DLCO measurements from 671 women (463 with HIV, 208 without HIV) met standards for quality and reproducibility. There was no significant difference in FEV1 between women with and without HIV. Women with HIV had lower DLCO measurements (adjusted difference, -0.73 mL/min/mm Hg; 95% confidence interval, -1.33 to -.14). Among women with HIV, lower nadir CD4 + cell counts and hepatitis C virus infection were associated with lower DLCO measurements. Conclusions Living with HIV was associated with impaired respiratory gas exchange in women. Among women with HIV, lower nadir CD4 + cell counts and hepatitis C infection were associated with decreased respiratory gas exchange.
In this multicenter cohort of women with and without human immunodeficiency virus (HIV), HIV infection was associated with impaired respiratory gas exchange. Among participants with HIV, lower nadir CD4 + cell counts and hepatitis C infection were also associated with decreased respiratory gas exchange
Recommended from our members
Pulmonary Function Trajectories in People with HIV: Analysis of the Pittsburgh HIV Lung Cohort
Although chronic lung illness and decreased pulmonary function are linked to human immunodeficiency virus (HIV) infection, longitudinal pulmonary function patterns in HIV are not yet known. to recognize pulmonary function trajectories, their causes, and their results. We discovered new, different longitudinal pulmonary function phenotypes with considerable variations in traits and results. These excellent findings should be confirmed in additional cohorts since they emphasize the significance of lung dysfunction over time in HIV-positive individuals
Recommended from our members
Pulmonary Function Trajectories in People with HIV: Analysis of the Pittsburgh HIV Lung Cohort.
Rationale: Human immunodeficiency virus (HIV) infection is associated with chronic lung disease and impaired pulmonary function; however, longitudinal pulmonary function phenotypes in HIV are undefined. Objectives: To identify pulmonary function trajectories, their determinants, and outcomes. Methods: We used data from participants with HIV in the Pittsburgh HIV Lung Cohort with three or more pulmonary function tests between 2007 and 2020. We analyzed post-bronchodilator forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC, and diffusing capacity of the lung for carbon monoxide (DlCO) using group-based trajectory modeling to identify subgroups of individuals whose measurements followed a similar pattern over time. We examined the association between participant characteristics and trajectories using multivariable logistic regression. In exploratory adjusted analyses restricted to individuals with available plasma cytokine data, we investigated the association between 18 individual standardized cytokine concentrations and trajectories. We compared mortality, dyspnea prevalence, respiratory health status, and 6-minute-walk distance between phenotypes. Results: A total of 265 participants contributed 1,606 pulmonary function measurements over a median follow-up of 8.1 years. We identified two trajectories each for FEV1 and FVC: "low baseline, slow decline" and "high baseline, rapid decline." There were three trajectory groups for FEV1/FVC: "rapid decline," "moderate decline," and "slow decline." Finally, we identified two trajectories for DlCO: "baseline low" and "baseline high." The low baseline, slow decline FEV1 and FVC, rapid decline, and moderate decline FEV1/FVC, and baseline low DlCO phenotypes were associated with increased dyspnea prevalence, worse respiratory health status, and decreased 6-minute-walk distance. The baseline low DlCO phenotype was also associated with worse mortality. Current smoking and pack-years of smoking were associated with the adverse FEV1, FEV1/FVC, and DlCO phenotypes. Detectable viremia was the only HIV marker associated with the adverse DlCO phenotype. C-reactive protein and endothelin-1 were associated with the adverse FEV1 and FVC phenotypes, and endothelin-1 trended toward an association with the adverse DlCO phenotype. Conclusions: We identified novel, distinct longitudinal pulmonary function phenotypes with significant differences in characteristics and outcomes. These findings highlight the importance of lung dysfunction over time in people with HIV and should be validated in additional cohorts
Recommended from our members
Obesity, inflammatory and thrombotic markers, and major clinical outcomes in critically ill patients with COVID‐19 in the US
Objective
This study aimed to determine whether obesity is independently associated with major adverse clinical outcomes and inflammatory and thrombotic markers in critically ill patients with COVID‐19.
Methods
The primary outcome was in‐hospital mortality in adults with COVID‐19 admitted to intensive care units across the US. Secondary outcomes were acute respiratory distress syndrome (ARDS), acute kidney injury requiring renal replacement therapy (AKI‐RRT), thrombotic events, and seven blood markers of inflammation and thrombosis. Unadjusted and multivariable‐adjusted models were used.
Results
Among the 4,908 study patients, mean (SD) age was 60.9 (14.7) years, 3,095 (62.8%) were male, and 2,552 (52.0%) had obesity. In multivariable models, BMI was not associated with mortality. Higher BMI beginning at 25 kg/m2 was associated with a greater risk of ARDS and AKI‐RRT but not thrombosis. There was no clinically significant association between BMI and inflammatory or thrombotic markers.
Conclusions
In critically ill patients with COVID‐19, higher BMI was not associated with death or thrombotic events but was associated with a greater risk of ARDS and AKI‐RRT. The lack of an association between BMI and circulating biomarkers calls into question the paradigm that obesity contributes to poor outcomes in critically ill patients with COVID‐19 by upregulating systemic inflammatory and prothrombotic pathways