229 research outputs found

    Human Performance Contributions to Safety in Commercial Aviation

    Get PDF
    In the commercial aviation domain, large volumes of data are collected and analyzed on the failures and errors that result in infrequent incidents and accidents, but in the absence of data on behaviors that contribute to routine successful outcomes, safety management and system design decisions are based on a small sample of non- representative safety data. Analysis of aviation accident data suggests that human error is implicated in up to 80% of accidents, which has been used to justify future visions for aviation in which the roles of human operators are greatly diminished or eliminated in the interest of creating a safer aviation system. However, failure to fully consider the human contributions to successful system performance in civil aviation represents a significant and largely unrecognized risk when making policy decisions about human roles and responsibilities. Opportunities exist to leverage the vast amount of data that has already been collected, or could be easily obtained, to increase our understanding of human contributions to things going right in commercial aviation. The principal focus of this assessment was to identify current gaps and explore methods for identifying human success data generated by the aviation system, from personnel and within the supporting infrastructure

    A REDCap-based model for electronic consent (eConsent): Moving toward a more personalized consent

    Get PDF
    Introduction: The updated common rule, for human subjects research, requires that consents begin with a \u27concise and focused\u27 presentation of the key information that will most likely help someone make a decision about whether to participate in a study (Menikoff, Kaneshiro, Pritchard. The New England Journal of Medicine. 2017; 376(7): 613-615.). We utilized a community-engaged technology development approach to inform feature options within the REDCap software platform centered around collection and storage of electronic consent (eConsent) to address issues of transparency, clinical trial efficiency, and regulatory compliance for informed consent (Harris, et al. Journal of Biomedical Informatics 2009; 42(2): 377-381.). eConsent may also improve recruitment and retention in clinical research studies by addressing: (1) barriers for accessing rural populations by facilitating remote consent and (2) cultural and literacy barriers by including optional explanatory material (e.g., defining terms by hovering over them with the cursor) or the choice of displaying different videos/images based on participant\u27s race, ethnicity, or educational level (Phillippi, et al. Journal of Obstetric, Gynecologic, and Neonatal Nursing. 2018; 47(4): 529-534.). Methods: We developed and pilot tested our eConsent framework to provide a personalized consent experience whereby users are guided through a consent document that utilizes avatars, contextual glossary information supplements, and videos, to facilitate communication of information. Results: The eConsent framework includes a portfolio of eight features, reviewed by community stakeholders, and tested at two academic medical centers. Conclusions: Early adoption and utilization of this eConsent framework have demonstrated acceptability. Next steps will emphasize testing efficacy of features to improve participant engagement with the consent process

    An approach for collaborative development of a federated biomedical knowledge graph-based question-answering system: Question-of-the-Month challenges

    Get PDF
    Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph-based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly "Question-of-the-Month (QotM) Challenge" series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system

    The landscape of soil carbon data: emerging questions, synergies and databases

    Get PDF
    Soil carbon has been measured for over a century in applications ranging from understanding biogeochemical processes in natural ecosystems to quantifying the productivity and health of managed systems. Consolidating diverse soil carbon datasets is increasingly important to maximize their value, particularly with growing anthropogenic and climate change pressures. In this progress report, we describe recent advances in soil carbon data led by the International Soil Carbon Network and other networks. We highlight priority areas of research requiring soil carbon data, including (a) quantifying boreal, arctic and wetland carbon stocks, (b) understanding the timescales of soil carbon persistence using radiocarbon and chronosequence studies, (c) synthesizing long-term and experimental data to inform carbon stock vulnerability to global change, (d) quantifying root influences on soil carbon and (e) identifying gaps in model–data integration. We also describe the landscape of soil datasets currently available, highlighting their strengths, weaknesses and synergies. Now more than ever, integrated soil data are needed to inform climate mitigation, land management and agricultural practices. This report will aid new data users in navigating various soil databases and encourage scientists to make their measurements publicly available and to join forces to find soil-related solutions

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore