375 research outputs found

    Longitudinal Position and Cancer Risk in the United States Revisited

    Full text link
    The debate over whether to keep daylight savings time has gained attention in recent years, with interest in understanding how the length of exposure to sunlight may affect health outcomes. In this study, we analyzed cancer incidence rates in counties located in different longitudinal positions within time zones and across time zone borders in the contiguous United States. Using both linear and spatial regression models, we found that differences in cancer rates are not significant within time zones or near time zone borders, which challenges previous research. Furthermore, we examined breast, liver, lung, and prostate cancer rates and found that only breast and liver cancers show an increase in incidence from the eastern border to the west within a time zone, while prostate cancer shows the opposite trend. Our study provides insights into the potential difference on human health incurred by an additional hour of sunlight in the morning versus in the evening, which could inform the ongoing discussions about daylight savings time

    ROBO-AO KEPLER PLANETARY CANDIDATE SURVEY. II. ADAPTIVE OPTICS IMAGING OF 969 KEPLER EXOPLANET CANDIDATE HOST STARS

    Get PDF
    We initiated the Robo-AO Kepler Planetary Candidate Survey in 2012 to observe each Kepler exoplanet candidate host star with high angular resolution, visible light, laser adaptive optics (AOs) imaging. Our goal is to find nearby stars lying in Kepler's photometric apertures that are responsible for the relatively high probability of false-positive exoplanet detections and that cause underestimates of the size of transit radii. Our comprehensive survey will also shed light on the effects of stellar multiplicity on exoplanet properties and will identify rare exoplanetary architectures. In this second part of our ongoing survey, we observed an additional 969 Kepler planet candidate hosts and we report blended stellar companions up to that contribute to Kepler's measured light curves. We found 203 companions within ~4'' of 181 of the Kepler stars, of which 141 are new discoveries. We measure the nearby star probability for this sample of Kepler planet candidate host stars to be 10.6% ± 1.1% at angular separations up to 25, significantly higher than the 7.4% ± 1.0% probability discovered in our initial sample of 715 stars; we find the probability increases to 17.6% ± 1.5% out to a separation of 40. The median position of Kepler Objects of Interest (KOIs) observed in this survey are 11 closer to the galactic plane, which may account for some of the nearby star probability enhancement. We additionally detail 50 Keck AO images of Robo-AO observed KOIs in order to confirm 37 companions detected at a <5σ significance level and to obtain additional infrared photometry on higher significance detected companions

    ROBO-AO KEPLER PLANETARY CANDIDATE SURVEY. II. ADAPTIVE OPTICS IMAGING OF 969 KEPLER EXOPLANET CANDIDATE HOST STARS

    Get PDF
    We initiated the Robo-AO Kepler Planetary Candidate Survey in 2012 to observe each Kepler exoplanet candidate host star with high angular resolution, visible light, laser adaptive optics (AOs) imaging. Our goal is to find nearby stars lying in Kepler's photometric apertures that are responsible for the relatively high probability of false-positive exoplanet detections and that cause underestimates of the size of transit radii. Our comprehensive survey will also shed light on the effects of stellar multiplicity on exoplanet properties and will identify rare exoplanetary architectures. In this second part of our ongoing survey, we observed an additional 969 Kepler planet candidate hosts and we report blended stellar companions up to that contribute to Kepler's measured light curves. We found 203 companions within ~4'' of 181 of the Kepler stars, of which 141 are new discoveries. We measure the nearby star probability for this sample of Kepler planet candidate host stars to be 10.6% ± 1.1% at angular separations up to 25, significantly higher than the 7.4% ± 1.0% probability discovered in our initial sample of 715 stars; we find the probability increases to 17.6% ± 1.5% out to a separation of 40. The median position of Kepler Objects of Interest (KOIs) observed in this survey are 11 closer to the galactic plane, which may account for some of the nearby star probability enhancement. We additionally detail 50 Keck AO images of Robo-AO observed KOIs in order to confirm 37 companions detected at a <5σ significance level and to obtain additional infrared photometry on higher significance detected companions

    Modeling the Emergence of Whisker Direction Maps in Rat Barrel Cortex

    Get PDF
    Based on measuring responses to rat whiskers as they are mechanically stimulated, one recent study suggests that barrel-related areas in layer 2/3 rat primary somatosensory cortex (S1) contain a pinwheel map of whisker motion directions. Because this map is reminiscent of topographic organization for visual direction in primary visual cortex (V1) of higher mammals, we asked whether the S1 pinwheels could be explained by an input-driven developmental process as is often suggested for V1. We developed a computational model to capture how whisker stimuli are conveyed to supragranular S1, and simulate lateral cortical interactions using an established self-organizing algorithm. Inputs to the model each represent the deflection of a subset of 25 whiskers as they are contacted by a moving stimulus object. The subset of deflected whiskers corresponds with the shape of the stimulus, and the deflection direction corresponds with the movement direction of the stimulus. If these two features of the inputs are correlated during the training of the model, a somatotopically aligned map of direction emerges for each whisker in S1. Predictions of the model that are immediately testable include (1) that somatotopic pinwheel maps of whisker direction exist in adult layer 2/3 barrel cortex for every large whisker on the rat's face, even peripheral whiskers; and (2) in the adult, neurons with similar directional tuning are interconnected by a network of horizontal connections, spanning distances of many whisker representations. We also propose specific experiments for testing the predictions of the model by manipulating patterns of whisker inputs experienced during early development. The results suggest that similar intracortical mechanisms guide the development of primate V1 and rat S1

    VLA/Realfast Detection of a Burst from FRB 180916.J0158+65 and Tests for Periodic Activity

    Get PDF
    We report on the detection of a burst from FRB 180916 by realfast/Very Large Array and present software for interpreting fast radio bursts (FRB) periodicity. We demonstrate a range of periodicity analyses with bursts from FRB 180916, FRB 121102 and FRB 180814. Our results for FRB 180916 and FRB 121102 are consistent with published results. For FRB 180814, we did not detect any significant periodic episodes. The realfast-detected and other high-frequency bursts for FRB 180916 tend to lie at the beginning of the activity window, indicating a possible phase-frequency relation. The python package frbpa can be used to reproduce and expand on this analysis to test models for repeating FRBs

    VLA/Realfast Detection of a Burst from FRB180916.J0158+65 and Tests for Periodic Activity

    Get PDF
    We report on the detection of a burst from FRB180916 by realfast/VLA and present software for interpreting fast radio bursts (FRB) periodicity. We demonstrate a range of periodicity analyses with bursts from FRB180916, FRB121102 and FRB180814. Our results for FRB180916 and FRB121102 are consistent with published results. For FRB180814, we did not detect any significant periodic episodes. The realfast-detected and other high-frequency bursts for FRB180916 tend to lie at the beginning of the activity window, indicating a possible phase-frequency relation. The python package frbpa\texttt{frbpa} can be used to reproduce and expand on this analysis to test models for repeating FRBs.Comment: Published in Research Notes of the AA

    Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent mouse model of repeated exposures

    Get PDF
    Aspergillus fumigatus is a filamentous fungus that produces abundant pigmented conidia. Several fungal components have been identified as virulence factors, including melanin; however, the impact of these factors in a repeated exposure model resembling natural environmental exposures remains unknown. This study examined the role of fungal melanin in the stimulation of pulmonary immune responses using immunocompetent BALB/c mice in a multiple exposure model. It compared conidia from wild-type A. fumigatus to two melanin mutants of the same strain, Δarp2 (tan) or Δalb1 (white). Mass spectrometry-based analysis of conidial extracts demonstrated that there was little difference in the protein fingerprint profiles between the three strains. Field emission scanning electron microscopy demonstrated that the immunologically inert Rodlet A layer remained intact in melanin-deficient conidia. Thus, the primary difference between the strains was the extent of melanization. Histopathology indicated that each A. fumigatus strain induced lung inflammation, regardless of the extent of melanization. In mice exposed to Δalb1 conidia, an increase in airway eosinophils and a decrease in neutrophils and CD8(+) IL-17(+) (Tc17) cells were observed. Additionally, it was shown that melanin mutant conidia were more rapidly cleared from the lungs than wild-type conidia. These data suggest that the presence of fungal melanin may modulate the pulmonary immune response in a mouse model of repeated exposures to A. fumigatus conidia

    Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening

    Get PDF
    The E1 and E2 envelope proteins of hepatitis C virus (HCV) form a heterodimer that drives virus-host membrane fusion. Here, we analyze the role of each amino acid in E1E2 function, expressing 545 individual alanine mutants of E1E2 in human cells, incorporating them into infectious viral pseudoparticles, and testing them against 37 different monoclonal antibodies (MAbs) to ascertain full-length translation, folding, heterodimer assembly, CD81 binding, viral pseudoparticle incorporation, and infectivity. We propose a model describing the role of each critical residue in E1E2 functionality and use it to examine how MAbs neutralize infection by exploiting functionally critical sites of vulnerability on E1E2. Our results suggest that E1E2 is a surprisingly fragile protein complex where even a single alanine mutation at 92% of positions disrupts its function. The amino-acid-level targets identified are highly conserved and functionally critical and can be exploited for improved therapies and vaccines
    • …
    corecore