16,460 research outputs found

    Model for resonant photon creation in a cavity with time dependent conductivity

    Get PDF
    In an electromagnetic cavity, photons can be created from the vacuum state by changing the cavity's properties with time. Using a simple model based on a massless scalar field, we analyze resonant photon creation induced by the time-dependent conductivity of a thin semiconductor film contained in the cavity. This time dependence may be achieved by irradiating periodically the film with short laser pulses. This setup offers several experimental advantages over the case of moving mirrors.Comment: 9 pages, 1 figure. Minor changes. Version to appear in Phys. Rev.

    Replacement of PBNA in HB and HC polymers used in SRM propellant and liner

    Get PDF
    The antioxidant phenyl-beta-naphthylamine (PBNA) was used in both HB and HC polymers. The sole (domestic) supplier of PBNA has withdrawn this product from the market, primarily because of suspected health hazards. Commercially available substitute(s) were selected and qualified for use in the two polymers

    A microprogrammable radar controller

    Get PDF
    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail

    Quantum lattice solitons in ultracold bosons near Feshbach resonance

    Full text link
    Quantum lattice solitons in a system of two ultracold bosons near Feshbach resonance are investigated. It is shown that their binding energy, effective mass, and spatial width, can be manipulated varying the detuning from the Feshbach resonance. In the case of attractive atomic interactions, the molecule creation stabilizes the solitons. In the case of repulsive interactions, the molecule creation leads to the possibility of existence of bright solitons in some interval of detunings. Due to quantum fluctuations the soliton width is a random quantity. Its standard deviation is larger than the mean value for such a small number of particles

    Generating entangled photon pairs from a cavity-QED system

    Full text link
    We propose a scheme for the controlled generation of Einstein-Podosky-Rosen (EPR) entangled photon pairs from an atom coupled to a high Q optical cavity, extending the prototype system as a source for deterministic single photons. A thorough theoretical analysis confirms the promising operating conditions of our scheme as afforded by currently available experimental setups. Our result demonstrates the cavity QED system as an efficient and effective source for entangled photon pairs, and shines new light on its important role in quantum information science.Comment: It has recently come to our attention that the experiment by T. Wilk, S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007), exactly realizes what we proposed in this article, which is published in Phy. Rev. A 040302(R) (2005

    Topological Excitations in Spinor Bose-Einstein Condensates

    Full text link
    We investigate the properties of skyrmion in the ferromagnetic state of spin-1 Bose-Einstein condensates by means of the mean-field theory and show that the size of skyrmion is fixed to the order of the healing length. It is shown that the interaction between two skyrmions with oppositely rotating spin textures is attractive when their separation is large, following a unique power-law behavior with a power of -7/2.Comment: 4 pages, 5 figure

    Analysis and interpretation of high transverse entanglement in optical parametric down conversion

    Full text link
    Quantum entanglement associated with transverse wave vectors of down conversion photons is investigated based on the Schmidt decomposition method. We show that transverse entanglement involves two variables: orbital angular momentum and transverse frequency. We show that in the monochromatic limit high values of entanglement are closely controlled by a single parameter resulting from the competition between (transverse) momentum conservation and longitudinal phase matching. We examine the features of the Schmidt eigenmodes, and indicate how entanglement can be enhanced by suitable mode selection methods.Comment: 4 pages, 4 figure

    Shot Noise in Anyonic Mach-Zehnder Interferometer

    Get PDF
    We show how shot noise in an electronic Mach-Zehnder interferometer in the fractional quantum Hall regime probes the charge and statistics of quantum Hall quasiparticles. The dependence of the noise on the magnetic flux through the interferometer allows for a simple way to distinguish Abelian from non-Abelian quasiparticle statistics. In the Abelian case, the Fano factor (in units of the electron charge) is always lower than unity. In the non-Abelian case, the maximal Fano factor as a function of the magnetic flux exceeds one.Comment: references adde

    Repeat-Until-Success quantum computing using stationary and flying qubits

    Full text link
    We introduce an architecture for robust and scalable quantum computation using both stationary qubits (e.g. single photon sources made out of trapped atoms, molecules, ions, quantum dots, or defect centers in solids) and flying qubits (e.g. photons). Our scheme solves some of the most pressing problems in existing non-hybrid proposals, which include the difficulty of scaling conventional stationary qubit approaches, and the lack of practical means for storing single photons in linear optics setups. We combine elements of two previous proposals for distributed quantum computing, namely the efficient photon-loss tolerant build up of cluster states by Barrett and Kok [Phys. Rev. A 71, 060310(R) (2005)] with the idea of Repeat-Until-Success (RUS) quantum computing by Lim et al. [Phys. Rev. Lett. 95, 030505 (2005)]. This idea can be used to perform eventually deterministic two-qubit logic gates on spatially separated stationary qubits via photon pair measurements. Under non-ideal conditions, where photon loss is a possibility, the resulting gates can still be used to build graph states for one-way quantum computing. In this paper, we describe the RUS method, present possible experimental realizations, and analyse the generation of graph states.Comment: 14 pages, 7 figures, minor changes, references and a discussion on the effect of photon dark counts adde
    corecore