194 research outputs found
Low-Resolution Place and Response Learning Capacities in Down Syndrome.
Down syndrome (DS), the most common genetic cause of intellectual disability, results from the partial or complete triplication of chromosome 21. Individuals with DS are impaired at using a high-resolution, allocentric spatial representation to learn and remember discrete locations in a controlled environment. Here, we assessed the capacity of individuals with DS to perform low-resolution spatial learning, depending on two competing memory systems: (1) the place learning system, which depends on the hippocampus and creates flexible relational representations of the environment; and (2) the response learning system, which depends on the striatum and creates fixed stimulus-response representations of behavioral actions. Individuals with DS exhibited a preservation of the low-resolution spatial learning capacities subserved by these two systems. In place learning, although the average performance of individuals with DS was lower than that of typically developing (TD) mental age (MA)-matched children and TD young adults, the number of individuals with DS performing above chance level did not differ from TD children. In response learning, the average performance of individuals with DS was lower than that of TD adults, but it did not differ from that of TD children. Moreover, the number of individuals with DS performing above chance level did not differ from TD adults, and was higher than that of TD children. In sum, whereas low-resolution place learning appears relatively preserved in individuals with DS, response learning appears facilitated. Our findings are consistent with the hypothesis that the neural pathways supporting low-resolution place learning and response learning are relatively preserved in DS
Turning round the telescope. Centre-right parties and immigration and integration policy in Europe
This is an Author's Original Manuscript of 'Turning round the telescope. Centre-right parties and immigration and integration policy in Europe', whose final and definitive form, the Version of Record, has been published in the Journal of European Public Policy 15(3):315-330, 2008 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/doi.org/10.1080/13501760701847341
Odor supported place cell model and goal navigation in rodents
Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self-generated olfactory cues, together with a mixed navigation strategy, improves goal directed navigation
Paradigmatic or Critical? Resilience as a New Turn in EU Governance for the Neighbourhood
Rising from the margins of EU aid documents, resilience became a centrepiece of the 2016 EU Global Security Strategy, especially in relation to the neighbourhood. While new resilience-thinking may signify another paradigmatic shift in EU modus operandi, the question that emerges is whether it is critical enough to render EU governance a new turn, to make it sustainable? This article argues that in order for resilience-framed governance to become more effective, the EU needs not just engage with ‘the local’ by way of externally enabling their communal capacity. More crucially, the EU needs to understand resilience for what it is – a self-governing project – to allow ‘the local’ an opportunity to grow their own critical infrastructures and collective agency, in their pursuit of ‘good life’. Is the EU ready for this new thinking, and not just rhetorically or even methodologically when creating new instruments and subjectivities? The bigger question is whether the EU is prepared to critically turn the corner of its neoliberal agenda to accommodate emergent collective rationalities of self-governance as a key to make its peace-building project more successful
The Hippocampus Is Coupled with the Default Network during Memory Retrieval but Not during Memory Encoding
The brain's default mode network (DMN) is activated during internally-oriented tasks and shows strong coherence in spontaneous rest activity. Despite a surge of recent interest, the functional role of the DMN remains poorly understood. Interestingly, the DMN activates during retrieval of past events but deactivates during encoding of novel events into memory. One hypothesis is that these opposing effects reflect a difference between attentional orienting towards internal events, such as retrieved memories, vs. external events, such as to-be-encoded stimuli. Another hypothesis is that hippocampal regions are coupled with the DMN during retrieval but decoupled from the DMN during encoding. The present fMRI study investigated these two hypotheses by combining a resting-state coherence analysis with a task that measured the encoding and retrieval of both internally-generated and externally-presented events. Results revealed that the main DMN regions were activated during retrieval but deactivated during encoding. Counter to the internal orienting hypothesis, this pattern was not modulated by whether memory events were internal or external. Consistent with the hippocampal coupling hypothesis, the hippocampus behaved like other DMN regions during retrieval but not during encoding. Taken together, our findings clarify the relationship between the DMN and the neural correlates of memory retrieval and encoding
Impaired Representation of Geometric Relationships in Humans with Damage to the Hippocampal Formation
The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks
Hippocampal - diencephalic - cingulate networks for memory and emotion: An anatomical guide
This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus
- …