348 research outputs found
beta-Cu2V2O7: a spin-1/2 honeycomb lattice system
We report on band structure calculations and a microscopic model of the
low-dimensional magnet beta-Cu2V2O7. Magnetic properties of this compound can
be described by a spin-1/2 anisotropic honeycomb lattice model with the
averaged coupling \bar J1=60-66 K. The low symmetry of the crystal structure
leads to two inequivalent couplings J1 and J1', but this weak spatial
anisotropy does not affect the essential physics of the honeycomb spin lattice.
The structural realization of the honeycomb lattice is highly non-trivial: the
leading interactions J1 and J1' run via double bridges of VO4 tetrahedra
between spatially separated Cu atoms, while the interactions between structural
nearest neighbors are negligible. The non-negligible inter-plane coupling
Jperp~15 K gives rise to the long-range magnetic ordering at TN~26 K. Our model
simulations improve the fit of the magnetic susceptibility data, compared to
the previously assumed spin-chain models. Additionally, the simulated ordering
temperature of 27 K is in remarkable agreement with the experiment. Our study
evaluates beta-Cu2V2O7 as the best available experimental realization of the
spin-1/2 Heisenberg model on the honeycomb lattice. We also provide an
instructive comparison of different band structure codes and computational
approaches to the evaluation of exchange couplings in magnetic insulators.Comment: 11 pages, 10 figures, 2 tables: revised version, extended description
of simulation result
Dynamic Energy Budget modelling to predict eastern oyster growth, reproduction, and mortality under river management and climate change scenarios
Eastern oysters growing in deltaic Louisiana estuaries in the northern Gulf of Mexico must tolerate considerable salinity variation from natural climate variability (e.g., rainfall and stream run-off pushing isohalines offshore; tropical storms pushing isohalines inshore) and man-made diversions and siphons releasing freshwater from the Mississippi River. These salinity variations are predicted to increase with future climate change because of the increased frequency of stronger storms and also in response to proposed large-scale river diversions. Increased Mississippi River flow into coastal estuaries from river diversions, along with potential changes in rainfall and stream run-off from climate change will alter spatial and temporal salinity patterns. In this study we used an individual Dynamic Energy Budget model to predict growth and reproductive potential of eastern oysters across observed and simulated salinity gradients corresponding to different climate and river management scenarios. We used validated model outputs of salinity from a coupled hydrology-hydrodynamic model to assess the current impacts of Davis Pond diversion discharge on oysters located downstream. Under a high diversion discharge scenario oyster growth potential was reduced by 9%, 4%, and 1% in Upper, Mid, and Lower Bay locations, respectively, as compared to a limited discharge year. Reproductive outputs decreased by 34% and 2% in the Upper and Lower Bay locations, respectively, and increased by 2% at the Mid Bay site. In scenarios combining predicted increased temperature with the effect of diversions, all oysters located in the Upper and Mid Bay sites died due to severe summer conditions (high temperatures combined with low salinity). Overall, oysters in down-estuary locations, influenced by both estuarine river management and gulf conditions demonstrated significant tolerance to changing salinity and temperature conditions from diversions alone and when combined with climate change. In contrast, oysters located up-estuary, and exposed to more extreme salinity impacts from river management, demonstrated potentially lethal impacts through direct mortality, and reduced sustainability through decrease in reproductive output. These predictions at the individual level may translate into less sustainable populations in the most extreme scenarios; restoration and production plans may benefit from accounting for these impacts on reproductive output particularly as decision makers seek to restore critical oyster areas
Coincidence measurement of residues and light particles in the reaction 56Fe+p at 1 GeV per nucleon with SPALADIN
The spallation of Fe in collisions with hydrogen at 1 A GeV has been
studied in inverse kinematics with the large-aperture setup SPALADIN at GSI.
Coincidences of residues with low-center-of-mass kinetic energy light particles
and fragments have been measured allowing the decomposition of the total
reaction cross-section into the different possible de-excitation channels.
Detailed information on the evolution of these de-excitation channels with
excitation energy has also been obtained. The comparison of the data with
predictions of several de-excitation models coupled to the INCL4 intra-nuclear
cascade model shows that only GEMINI can reasonably account for the bulk of
collected results, indicating that in a light system with no compression and
little angular momentum, multifragmentation might not be necessary to explain
the data.Comment: 4 pages, 5 figures, revised version accepted in Phys. Rev. Let
Evidence for Spinodal Decomposition in Nuclear Multifragmentation
Multifragmentation of a ``fused system'' was observed for central collisions
between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products
were well identified thanks to the high performances of the INDRA 4pi array.
Experimental higher-order charge correlations for fragments show a weak but non
ambiguous enhancement of events with nearly equal-sized fragments. Supported by
dynamical calculations in which spinodal decomposition is simulated, this
observed enhancement is interpreted as a ``fossil'' signal of spinodal
instabilities in finite nuclear systems.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter
Pion radii in nonlocal chiral quark model
The electromagnetic radius of the charged pion and the transition radius of
the neutral pion are calculated in the framework of the nonlocal chiral quark
model. It is shown in this model that the contributions of vector mesons to the
pion radii are noticeably suppressed in comparison with a similar contribution
in the local Nambu--Jona-Lasinio model. The form-factor for the process
gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in
satisfactory agreement with experimental data.Comment: 7 pages, 7 figure
Response of CsI(Tl) scintillators over a large range in energy and atomic number of ions (Part I): recombination and delta -- electrons
A simple formalism describing the light response of CsI(Tl) to heavy ions,
which quantifies the luminescence and the quenching in terms of the competition
between radiative transitions following the carrier trapping at the Tl
activator sites and the electron-hole recombination, is proposed. The effect of
the delta rays on the scintillation efficiency is for the first time
quantitatively included in a fully consistent way. The light output expression
depends on four parameters determined by a procedure of global fit to
experimental data.Comment: 28 pages, 6 figures, submitted to Nucl. Inst. Meth.
Dynamical effects in multifragmentation at intermediate energies
The fragmentation of the quasi-projectile is studied with the INDRA
multidetector for different colliding systems and incident energies in the
Fermi energy range. Different experimental observations show that a large part
of the fragmentation is not compatible with the statistical fragmentation of a
fully equilibrated nucleus. The study of internal correlations is a powerful
tool, especially to evidence entrance channel effects. These effects have to be
included in the theoretical descriptions of nuclear multifragmentation.Comment: 13 pages, 26 figures, submitted to Physical Review
Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197Au
Low-energy pi+ (E < 35 MeV) from 12C+197Au collisions at incident energies
from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl)
calibration telescopes of the INDRA multidetector. The inclusive angular
distributions are approximately isotropic, consistent with multiple
rescattering in the target spectator. The multiplicity correlations of the
low-energy pions and of energetic protons (E > 150 MeV) with intermediate-mass
fragments were determined from the measured coincidence data. The deduced
correlation functions 1 + R \approx 1.3 for inclusive event samples reflect the
strong correlations evident from the common impact-parameter dependence of the
considered multiplicities. For narrow impact-parameter bins (based on
charged-particle multiplicity), the correlation functions are close to unity
and do not indicate strong additional correlations. Only for pions at high
particle multiplicities (central collisions) a weak anticorrelation is
observed, probably due to a limited competition between these emissions.
Overall, the results are consistent with the equilibrium assumption made in
statistical multifragmentation scenarios. Predictions obtained with
intranuclear cascade models coupled to the Statistical Multifragmentation Model
are in good agreement with the experimental data.Comment: 9 pages, 11 figures, subm. to EPJ
Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions
We study the anisotropy effects measured with INDRA at GSI in central
collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy.
The microcanonical multifragmentation model with non-spherical sources is used
to simulate an incomplete shape relaxation of the multifragmenting system. This
model is employed to interpret observed anisotropic distributions in the
fragment size and mean kinetic energy. The data can be well reproduced if an
expanding prolate source aligned along the beam direction is assumed. An either
non-Hubblean or non-isotropic radial expansion is required to describe the
fragment kinetic energies and their anisotropy. The qualitative similarity of
the results for the studied reactions suggests that the concept of a
longitudinally elongated freeze-out configuration is generally applicable for
central collisions of heavy systems. The deformation decreases slightly with
increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics
Multifragmentation process for different mass asymmetry in the entrance channel around the Fermi energy
The influence of the entrance channel asymmetry upon the fragmentation
process is addressed by studying heavy-ion induced reactions around the Fermi
energy. The data have been recorded with the INDRA 4pi array. An event
selection method called the Principal Component Analysis is presented and
discussed. It is applied for the selection of central events and furthermore to
multifragmentation of single source events. The selected subsets of data are
compared to the Statistical Multifragmentation Model (SMM) to check the
equilibrium hypothesis and get the source characteristics. Experimental
comparisons show the evidence of a decoupling between thermal and compresional
(radial flow) degrees of freedom in such nuclear systems.Comment: 28 pages, 15 figures, article sumitted to Nuclear Physics
- âŠ