40 research outputs found
Ontwikkeling zeebodemintegriteit op het Friese Front en de Centrale Oestergronden in relatie tot bodemberoerende visserij: Verslag expert workshop
Het bodemecosysteem van het diepe, slibrijke, noordelijke deel van het NCP wordt momenteel nog niet beschermd. Dit type ecosysteem is aanwezig in de gebieden het Friese Front en de Centrale Oestergronden. Deze gebieden zijn door het Kabinet aangemerkt als zoekgebieden voor ruimtelijke beschermingsmaatregelen. In dit rapport richten we ons op de vraag: - Wat ontwikkelt zich aan habitatkarakteristieken, en vervolgens aan soorten, als je de gebieden sluit voor bodemberoerende visserij? Deze vraag is uitgediept middels een workshop met tien experts van zes Nederlandse organisaties met expertise op het gebied van o.a. mariene ecologie, geologie, morfologie, processen, taxonomie, Noordzee benthos, en impacts van menselijke activiteiten, waaronder visserij
マルチヒーターを使用した一方向性凝固法による熱流動解析の試み : シリコン多結晶について
This study characterizes the microbial community composition over Haas Mound, one of the most prominent cold-water coral mounds of the Logachev Mound province (Rockall Bank, NE Atlantic). We outline patterns of distribution vertically – from the seafloor to the water column – and laterally – across the mound – and couple these to mound topography and hydrography. Samples of water, sediment and Lophelia pertusa were collected in 2012 and 2013 from locations that were chosen based on high definition video surveys. Temperature and current measurements were obtained at two sites at the summit and foot of Haas Mound to study near-bed hydrodynamic conditions. Overlaying water was collected from depths of 400 m as well as 5 and 10 m above the bottom using a CTD/Rosette system. Near-bottom water, sediment and L. pertusa mucus and skeleton samples were obtained with a box corer. Of all these biotopes, Roche GS-FLX amplicon sequencing targeting both Bacteria and Archaea was carried out, augmenting our understanding of deep sea microbial consortia. The pattern of similarities between samples, visualized by multi-dimensional scaling (MDS), indicates a strong link between the distribution of microbes and the specific biotopes. The microbial operational taxonomic unit (OTU) diversity was the highest in near-bottom water, which was sampled in the coral framework. For the first time, Thaumarchaeota marine group I (MGI) were found in L. pertusa mucus; Endozoicomonas was detected in skeleton, mucus and near-bottom water, whereas Mycoplasma was only detected in skeleton and near-bottom water, however not in mucus. Analysis of similarities (ANOSIM) indicates that overlaying water is well-mixed at 400 m depth but less so at 5 and 10 m above the bottom, where the composition of microbial communities differed significantly between summit, slope and off-mound. At all locations, the near-bottom water differed significantly from water at 5 m above the bottom, illustrating that the near-bottom water in between the coral framework represents a separate microbial habitat. Furthermore, the observed spatial heterogeneity in microbial communities is discussed in relation to environmental conditions
Sponge diversity and community composition in Irish bathyal coral reefs
Sponge diversity and community composition in bathyal cold water coral reefs (CWRs) were examined at 500-900 m depth on the southeastern slopes of Rockall Bank and the northwestern slope of Porcupine Bank, to the west of Ireland in 2004 and 2005 with boxcores. A total of 104 boxcore samples, supplemented with 10 trawl/dredge attempts, were analyzed for the presence and abundance of sponges, using microscopical examination of (sub)samples of collected coral branches, and semi-quantitative macroscopic examination. Approximate minimum size of identified and counted sponge individuals was 1 mm. Literature data were added to the Porcupine Bank results to compensate for a less intensive sampling program in that location. Species richness and abundance were determined at local (sample diversity, pooled-sample diversity, local reef diversity), between-reef (diversity of two reef areas at 15 km distance), and regional scales (diversity of three reef areas over a distance of 200 km). Abiotic and biotic parameters including depth, the presence and cover of live coral, dead coral and sand, local reef, and orientation towards the nearest reef mound summit, were included in a constrained ordination technique (RDA); a Monte Carlo forward selection procedure was used to obtain significant predictors of variation in composition. The results of this analysis were compared with unconstrained ordination (PCA) and cluster analysis. The presence of live coral, depth and the local reefs C1 and C3 proved to be significant predictors of variation in sponge composition. The PCA and cluster analysis confirmed these results. Sample species richness was consistently heterogeneous from zero species and individuals up to 57 species and 90 individuals per (boxcore) sample. Species richness of local reefs determined from pooled samples showed the three localities studied to have similar species richness, namely 105-122 species in each location. Species richness was highest in samples with relatively low live coral cover. As in the RDA, live coral presence and depth appeared to be responsible for most of the variation observed in the cluster results. Cluster analysis of Bray-Curtis dissimilarity values of the pooled samples of all three reef localities using presence / absence data of all available samples indicated that distance appeared to structure the composition of the sponge assemblages of the three reef mound areas, but much less so within and among local reefs. Bathyal reefs of the regions to the west of Ireland were found to have a combined sponge species richness of 191 species, exceeding the richness of individual reef mound areas by c. 38-45%. Sponge presence in CWRs is clearly structured and controlled by biotic and abiotic factors. In particular, live coral presence appears a significant predictor of CWR sponge composition and diversity
Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition
The trophic structure of cold-water coral reef communities at two contrasting locations, the 800-m deep Belgica Mounds (Irish margin) and the 300-m deep Træna reefs (Norwegian Shelf), was investigated using stable isotope (δ13C and δ15N) and fatty-acid composition analysis. A broad range of specimens, with emphasis on (commercial) fish specie's, and organic matter sources were sampled using a variety of tools. Irrespective of the environmental and geographical setting, the δ15N values indicated that the food web encompasses roughly 1.5 to 3 trophic levels. Mobile echinoderms, i.e. sea urchins and sea stars, had highest δ15N values, indicative of a high trophic position in the food web. The fraction of bacterial fatty acids in reef fauna was generally low (<5%), indicating that enhanced bacterial production in the water column through seafloor seepage of nutrients (‘hydraulic theory’) does not form a significant energy pathway into the food web. The high fraction of algal and essential fatty acids in reef fauna and fish at both locations indicates a close coupling with surface productivity, but the transport mechanism depends on the hydrographic setting. At Træna, Calanus copepods and euphausiids form an additional link between primary production and fish, which is largely absent at Belgica Mounds. At Belgica Mounds, the reef community is primarily supported by phytodetritus, as evidenced by the high contribution of algal fatty acids in faunal tissue and seasonal chlorophyll a deposition and marine snow at the reef. The environmental setting of cold-water coral reefs influences the structure of the associated food web
Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters
The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI, as in the multivariate m-AMBI. The latter MMI has been adopted by several European countries in the context of WFD implementation. In contrast to m-AMBI, the BEQI2 calculation procedure has been strongly simplified and consists of two steps, i.e. the separate indicator values are normalized using their long-term reference values resulting in three Ecological Quality Ratios (EQRs), which are subsequently averaged to give one BEQI2 value. Using this method only small numbers of samples need to be analysed by Dutch benthos laboratories annually, without the necessity to co-analyse a larger historical dataset. BEQI2 EQR values appeared to correlate quantitatively very well with m-AMBI EQR values. In addition, a data pooling procedure has been added to the BEQI2 tool which enables the pooling of small core samples (0.01–0.025 m<sup>2</sup>) into larger standardized data pools of 0.1 m<sup>2</sup> in order to meet the data requirements of the AMBI indicator and to obtain comparable reference values. Furthermore, the BEQI2 tool automatically and efficiently converts species synonym names into standardized species names. The BEQI2 tool has been applied to all Dutch benthos data monitored by Rijkswaterstaat in the period of 1991–2010 in the transitional and coastal waters and salt lakes and these results are reported here for the first time. Reference values for species richness and Shannon index (99 percentile values) and AMBI reference values (1 percentile values) were estimated for all water body–ecotopes and are discussed. BEQI2 results for all these water bodies are discussed in view of natural and human pressures. The pressure sensitivity of the BEQI2 for sewage and dredging/dumping, via the state variables oxygen and suspended matter respectively, was demonstrated
Verkenning zoneringsmaatregelen met Marxan: Kaderrichtlijn Marien op het Friese Front en Centrale Oestergronden
De ambitie is om van het Nederlands Continentaal Plat (NCP) 10-15% van de bodem te beschermen tegen bodemberoering. Een belangrijk uitgangspunt in de Mariene Strategie is dat de genoemde maatregel voor de visserijsector tot een minimumlast beperkt dient te worden. Daartoe wordt in deze studie het model Marxan toegepast. De geanalyseerde scenario’s resulteren in ruimtelijke uitwerkingen waarbij de te sluiten zone en een schets van de visserijkosten worden gepresenteerd, en ook welke ecologische winst worden behaald