474 research outputs found

    Towards Nonperturbative Renormalizability of Quantum Einstein Gravity

    Get PDF
    We summarize recent evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity (QEG) is nonperturbatively renormalizable along the lines of Weinberg's asymptotic safety scenario. This would mean that QEG is mathematically consistent and predictive even at arbitrarily small length scales below the Planck length. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit. The cosmological implications of this fixed point are discussed, and it is argued that QEG might solve the horizon and flatness problem of standard cosmology without an inflationary period.Comment: 10 pages, latex, 1 figur

    Renormalization Group Flow of the Holst Action

    Get PDF
    The renormalization group (RG) properties of quantum gravity are explored, using the vielbein and the spin connection as the fundamental field variables. The scale dependent effective action is required to be invariant both under space time diffeomorphisms and local frame rotations. The nonperturbative RG equation is solved explicitly on the truncated theory space defined by a three parameter family of Holst-type actions which involve a running Immirzi parameter. We find evidence for the existence of an asymptotically safe fundamental theory, probably inequivalent to metric quantum gravity constructed in the same way.Comment: 5 pages, 1 figur

    Contraints on Matter from Asymptotic Safety

    Full text link
    Recent studies of the ultraviolet behaviour of pure gravity suggest that it admits a non-Gaussian attractive fixed point, and therefore that the theory is asymptotically safe. We consider the effect on this fixed point of massless minimally coupled matter fields. The existence of a UV attractive fixed point puts bounds on the type and number of such fields.Comment: 5 pages, 2 figures, revtex4; introduction expande

    Asymptotic Safety of Gravity Coupled to Matter

    Full text link
    Nonperturbative treatments of the UV limit of pure gravity suggest that it admits a stable fixed point with positive Newton's constant and cosmological constant. We prove that this result is stable under the addition of a scalar field with a generic potential and nonminimal couplings to the scalar curvature. There is a fixed point where the mass and all nonminimal scalar interactions vanish while the gravitational couplings have values which are almost identical to the pure gravity case. We discuss the linearized flow around this fixed point and find that the critical surface is four-dimensional. In the presence of other, arbitrary, massless minimally coupled matter fields, the existence of the fixed point, the sign of the cosmological constant and the dimension of the critical surface depend on the type and number of fields. In particular, for some matter content, there exist polynomial asymptotically free scalar potentials, thus providing a solution to the well-known problem of triviality.Comment: 18 pages,typeset with revtex

    Background Independence and Asymptotic Safety in Conformally Reduced Gravity

    Full text link
    We analyze the conceptual role of background independence in the application of the effective average action to quantum gravity. Insisting on a background independent renormalization group (RG) flow the coarse graining operation must be defined in terms of an unspecified variable metric since no rigid metric of a fixed background spacetime is available. This leads to an extra field dependence in the functional RG equation and a significantly different RG flow in comparison to the standard flow equation with a rigid metric in the mode cutoff. The background independent RG flow can possess a non-Gaussian fixed point, for instance, even though the corresponding standard one does not. We demonstrate the importance of this universal, essentially kinematical effect by computing the RG flow of Quantum Einstein Gravity in the ``conformally reduced'' Einstein--Hilbert approximation which discards all degrees of freedom contained in the metric except the conformal one. Without the extra field dependence the resulting RG flow is that of a simple ϕ4\phi^4-theory. Including it one obtains a flow with exactly the same qualitative properties as in the full Einstein--Hilbert truncation. In particular it possesses the non-Gaussian fixed point which is necessary for asymptotic safety.Comment: 4 figures

    Is Quantum Einstein Gravity Nonperturbatively Renormalizable?

    Get PDF
    We find considerable evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity is ``asymptotically safe'' in Weinberg's sense. This would mean that the theory is likely to be nonperturbatively renormalizable and thus could be considered a fundamental (rather than merely effective) theory which is mathematically consistent and predictive down to arbitrarily small length scales. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit. The truncation ansatz includes the Einstein-Hilbert action and a higher derivative term.Comment: 18 pages, latex, 3 figure

    Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity

    Full text link
    Motivated by Weinberg's asymptotic safety scenario, we investigate the gravitational renormalization group flow in the Einstein-Hilbert truncation supplemented by the wave-function renormalization of the ghost fields. The latter induces non-trivial corrections to the beta-functions for Newton's constant and the cosmological constant. The resulting ghost-improved phase diagram is investigated in detail. In particular, we find a non-trivial ultraviolet fixed point in agreement with the asymptotic safety conjecture, which also survives in the presence of extra dimensions. In four dimensions the ghost anomalous dimension at the fixed point is ηc=1.8\eta_c^* = -1.8, supporting space-time being effectively two-dimensional at short distances.Comment: 23 pages, 4 figure
    corecore