3 research outputs found

    Visual Counting and Automated Image-analytic Assessment of Ki-67 and their Prognostic Value in Synovial Sarcoma

    Get PDF
    BACKGROUND: Ki-67 is a widely used proliferation marker reflecting prognosis in various tumors. However, visual assessment and scoring of Ki-67 suffers from marked inter-observer and intra-observer variability. We aimed to assess the concordance of manual counting and automated image-analytic scoring methods for Ki-67 in synovial sarcoma. PATIENTS AND METHODS: Tissue microarrays from 34 patients with synovial sarcoma were immunostained for Ki-67 and scored both visually and with 3DHistech QuantCenter. RESULTS: The automated assessment of Ki-67 expression was in good agreement with the visually counted Ki-67 (r Pearson =0.96, p<0.001). In a Cox regression model automated [hazard ratio (HR)=1.047, p=0.024], but not visual (HR=1.063, p=0.053) assessment method associated high Ki-67 scores with worse overall survival. CONCLUSION: The automated Ki-67 assessment method appears to be comparable to the visual method in synovial sarcoma and had a significant association to overall survival.publishedVersionPeer reviewe

    Heme oxygenase-1 repeat polymorphism in septic acute kidney injury

    No full text
    Abstract Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine–thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S–L (short to long) classification, and 27 and 34 repeats for the S–M–L₂ (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01–1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p&lt;0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk
    corecore