4 research outputs found

    Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia

    Get PDF
    Objective Morphine is a commonly used drug in encephalopathic neonates treated with therapeutic hypothermia after perinatal asphyxia. Pharmacokinetics and optimal dosing of morphine in this population are largely unknown. The objective of this study was to describe pharmacokinetics of morphine and its metabolites morphine-3-glucuronide and morphine-6-glucuronide in encephalopathic neonates treated with therapeutic hypothermia and to develop pharmacokinetics based dosing guidelines for this population. Study design Term and near-term encephalopathic neonates treated with therapeutic hypothermia and receiving morphine were included in two multicenter cohort studies between 2008-2010 (SHIVER) and 2010-2014 (PharmaCool). Data were collected during hypothermia and rewarming, including blood samples for quantification of morphine and its metabolites. Parental informed consent was obtained for all participants. Results 244 patients (GA mean (sd) 39.8 (1.6) weeks, BW mean (sd) 3,428 (613) g, male 61.5%) were included. Morphine clearance was reduced under hypothermia (33.5 degrees C) by 6.89%/degrees C (95% CI 5.37%/degrees C-8.41%/degrees C, p<0.001) and metabolite clearance by 4.91%/degrees C (95% CI 3.53%/degrees C-6.22%/degrees C, p<0.001) compared to normothermia (36.5 degrees C). Simulations showed that a loading dose of 50 mu g/kg followed by continuous infusion of 5 mu g/kg/h resulted in morphine plasma concentrations in the desired range (between 10 and 40 mu g/L) during hypothermia. Conclusions Clearance of morphine and its metabolites in neonates is affected by therapeutic hypothermia. The regimen suggested by the simulations will be sufficient in the majority of patients. However, due to the large interpatient variability a higher dose might be necessary in individual patients to achieve the desired effect

    The biology of cystatin M/E and its cognate target proteases.

    Get PDF
    Contains fulltext : 81327.pdf (publisher's version ) (Closed access)Cystatin M/E is a member of a superfamily of evolutionarily-related cysteine protease inhibitors that provide regulatory and protective functions against uncontrolled proteolysis by cysteine proteases. Although most cystatins are ubiquitously expressed, high levels of cystatin M/E expression are mainly restricted to the epithelia of the skin (epidermis, hair follicles, sebaceous glands, and sweat glands) and to a few extracutaneous tissues. The identification of its physiological targets and the localization of these proteases in skin have suggested a regulatory role for cystatin M/E in epidermal differentiation. In vitro biochemical approaches as well as the use of in vivo mouse models have revealed that cystatin M/E is a key molecule in a biochemical pathway that controls skin barrier formation by the regulation of both crosslinking and desquamation of the stratum corneum. Cystatin M/E directly controls the activity of cathepsin V, cathepsin L, and legumain, thereby regulating the processing of transglutaminases. Misregulation of this pathway by unrestrained protease activity, as seen in cystatin M/E-deficient mice, leads to abnormal stratum corneum and hair follicle formation, as well as to severe disturbance of skin barrier function. Here, we review the current knowledge on cystatin M/E in skin barrier formation and its potential role as a tumor suppressor gene
    corecore