119 research outputs found

    On GROUSE and Incremental SVD

    Full text link
    GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an incremental algorithm for identifying a subspace of Rn from a sequence of vectors in this subspace, where only a subset of components of each vector is revealed at each iteration. Recent analysis has shown that GROUSE converges locally at an expected linear rate, under certain assumptions. GROUSE has a similar flavor to the incremental singular value decomposition algorithm, which updates the SVD of a matrix following addition of a single column. In this paper, we modify the incremental SVD approach to handle missing data, and demonstrate that this modified approach is equivalent to GROUSE, for a certain choice of an algorithmic parameter

    High-Dimensional Matched Subspace Detection When Data are Missing

    Full text link
    We consider the problem of deciding whether a highly incomplete signal lies within a given subspace. This problem, Matched Subspace Detection, is a classical, well-studied problem when the signal is completely observed. High- dimensional testing problems in which it may be prohibitive or impossible to obtain a complete observation motivate this work. The signal is represented as a vector in R^n, but we only observe m << n of its elements. We show that reliable detection is possible, under mild incoherence conditions, as long as m is slightly greater than the dimension of the subspace in question

    Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

    Full text link
    Modern applications increasingly involve high-dimensional and heterogeneous data, e.g., datasets formed by combining numerous measurements from myriad sources. Principal Component Analysis (PCA) is a classical method for reducing dimensionality by projecting such data onto a low-dimensional subspace capturing most of their variation, but PCA does not robustly recover underlying subspaces in the presence of heteroscedastic noise. Specifically, PCA suffers from treating all data samples as if they are equally informative. This paper analyzes a weighted variant of PCA that accounts for heteroscedasticity by giving samples with larger noise variance less influence. The analysis provides expressions for the asymptotic recovery of underlying low-dimensional components from samples with heteroscedastic noise in the high-dimensional regime, i.e., for sample dimension on the order of the number of samples. Surprisingly, it turns out that whitening the noise by using inverse noise variance weights is suboptimal. We derive optimal weights, characterize the performance of weighted PCA, and consider the problem of optimally collecting samples under budget constraints.Comment: 52 pages, 13 figure

    Towards a Theoretical Analysis of PCA for Heteroscedastic Data

    Full text link
    Principal Component Analysis (PCA) is a method for estimating a subspace given noisy samples. It is useful in a variety of problems ranging from dimensionality reduction to anomaly detection and the visualization of high dimensional data. PCA performs well in the presence of moderate noise and even with missing data, but is also sensitive to outliers. PCA is also known to have a phase transition when noise is independent and identically distributed; recovery of the subspace sharply declines at a threshold noise variance. Effective use of PCA requires a rigorous understanding of these behaviors. This paper provides a step towards an analysis of PCA for samples with heteroscedastic noise, that is, samples that have non-uniform noise variances and so are no longer identically distributed. In particular, we provide a simple asymptotic prediction of the recovery of a one-dimensional subspace from noisy heteroscedastic samples. The prediction enables: a) easy and efficient calculation of the asymptotic performance, and b) qualitative reasoning to understand how PCA is impacted by heteroscedasticity (such as outliers).Comment: Presented at 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton
    • …
    corecore