1,484 research outputs found
Navigating the Research-Clinical Interface in Genomic Medicine: Analysis From the CSER Consortium
Purpose: The Clinical Sequencing Exploratory Research (CSER) Consortium encompasses nine National Institutes of Healthâ funded U-award projects investigating translation of genomic sequencing into clinical care. Previous literature has distinguished norms and rules governing research versus clinical care. This is the first study to explore how genomics investigators describe and navigate the researchâclinical interface. Methods: A CSER working group developed a 22-item survey. All nine U-award projects participated. Descriptive data were tabulated and qualitative analysis of text responses identified themes and characterizations of the researchâclinical interface. Results: Survey responses described how studies approached the researchâclinical interface, including in consent practices, recording results, and using a research versus clinical laboratory. Responses revealed four characterizations of the interface: clear separation between research and clinical care, interdigitation of the two with steps to maintain separation, a dynamic interface, and merging of the two. All survey respondents utilized at least two different characterizations. Although research has traditionally been differentiated from clinical care, respondents pointed to factors blurring the distinction and strategies to differentiate the domains.
Conclusion: These results illustrate the difficulty in applying the traditional bifurcation of research versus clinical care to translational models of clinical research, including in genomics. Our results suggest new directions for ethics and oversight
Patients' Choices for Return of Exome Sequencing Results to Relatives in the Event of Their Death
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116009/1/jlme12290.pd
Is âincidental findingâ the best term?: a study of patientsâ preferences
There is debate within the genetics community about the optimal term to describe genetic variants unrelated to the test indication, but potentially important for health. Given the lack of consensus and the importance of adopting terminology that promotes effective clinical communication, we sought the opinion of clinical genetics patients
Rare loss of function variants in candidate genes and risk of colorectal cancer
Although ~â25% of colorectal cancer or polyp (CRC/P) cases show familial aggregation, current germline genetic testing identifies a causal genotype in the 16 major genes associated with high penetrance CRC/P in only 20% of these cases. As there are likely other genes underlying heritable CRC/P, we evaluated the association of variation at novel loci with CRC/P. We evaluated 158 a priori selected candidate genes by comparing the number of rare potentially disruptive variants (PDVs) found in 84 CRC/P cases without an identified CRC/P risk-associated variant and 2440 controls. We repeated this analysis using an additional 73 CRC/P cases. We also compared the frequency of PDVs in select genes among CRC/P cases with two publicly available data sets. We found a significant enrichment of PDVs in cases vs. controls: 20% of cases vs. 11.5% of controls with â„â1 PDV (ORâ=â1.9, pâ=â0.01) in the original set of cases. Among the second cohort of CRC/P cases, 18% had a PDV, significantly different from 11.5% (pâ=â0.02). Logistic regression, adjusting for ancestry and multiple testing, indicated association between CRC/P and PDVs in NTHL1 (pâ=â0.0001), BRCA2 (pâ=â0.01) and BRIP1 (pâ=â0.04). However, there was no significant difference in the frequency of PDVs at each of these genes between all 157 CRC/P cases and two publicly available data sets. These results suggest an increased presence of PDVs in CRC/P cases and support further investigation of the association of NTHL1, BRCA2 and BRIP1 variation with CRC/P
Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium
Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease
Generating a taxonomy for genetic conditions relevant to reproductive planning
As genome or exome sequencing (hereafter genome-scale sequencing) becomes more integrated into standard care, carrier testing is an important possible application. Carrier testing using genome-scale sequencing can identify a large number of conditions, but choosing which conditions/genes to evaluate as well as which results to disclose can be complicated. Carrier testing generally occurs in the context of reproductive decision-making and involves patient values in a way that other types of genetic testing may not. The Kaiser Permanente Clinical Sequencing Exploratory Research program is conducting a randomized clinical trial of preconception carrier testing that allows participants to select their preferences for results from among broad descriptive categories rather than selecting individual conditions. This paper describes 1) the criteria developed by the research team, the return of results committee (RORC), and stakeholders for defining the categories; 2) the process of refining the categories based on input from patient focus groups and validation through a patient survey; and, 3) how the RORC then assigned specific gene-condition pairs to taxonomy categories being piloted in the trial. The development of four categories (serious, moderate/mild, unpredictable, late onset) for sharing results allows patients to select results based on their values without separately deciding their interest in knowing their carrier status for hundreds of conditions. A fifth category, lifespan limiting, was always shared. The lessons learned may be applicable in other results disclosure situations, such as incidental findings
Actionable, Pathogenic Incidental Findings in 1,000 Participantsâ Exomes
The incorporation of genomics into medicine is stimulating interest on the return of incidental findings (IFs) from exome and genome sequencing. However, no large-scale study has yet estimated the number of expected actionable findings per individual; therefore, we classified actionable pathogenic single-nucleotide variants in 500 European- and 500 African-descent participants randomly selected from the National Heart, Lung, and Blood Institute Exome Sequencing Project. The 1,000 individuals were screened for variants in 114 genes selected by an expert panel for their association with medically actionable genetic conditions possibly undiagnosed in adults. Among the 1,000 participants, 585 instances of 239 unique variants were identified as disease causing in the Human Gene Mutation Database (HGMD). The primary literature supporting the variantsâ pathogenicity was reviewed. Of the identified IFs, only 16 unique autosomal-dominant variants in 17 individuals were assessed to be pathogenic or likely pathogenic, and one participant had two pathogenic variants for an autosomal-recessive disease. Furthermore, one pathogenic and four likely pathogenic variants not listed as disease causing in HGMD were identified. These data can provide an estimate of the frequency (âŒ3.4% for European descent and âŒ1.2% for African descent) of the high-penetrance actionable pathogenic or likely pathogenic variants in adults. The 23 participants with pathogenic or likely pathogenic variants were disproportionately of European (17) versus African (6) descent. The process of classifying these variants underscores the need for a more comprehensive and diverse centralized resource to provide curated information on pathogenicity for clinical use to minimize health disparities in genomic medicine
Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing
We are investigating the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient
A Mouse Model of Pulmonary Metastasis from Spontaneous Osteosarcoma Monitored In Vivo by Luciferase Imaging
BACKGROUND: Osteosarcoma (OSA) is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c) murine OSA model, using a cell line derived from a spontaneous murine tumor. METHODOLOGY: The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. PRINCIPAL FINDINGS: Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. CONCLUSIONS: This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation
Long-Term Survival of Human Neural Stem Cells in the Ischemic Rat Brain upon Transient Immunosuppression
Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and ÎČ-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders
- âŠ