10 research outputs found

    Transfer of Simple Task Learning is Different in Approach and Withdrawal Contexts

    Get PDF
    AbstractAcademic achievement, subjective well-being, and effectiveness of training are known to be dependent on motivation. Correspondingly, the utilization of prior knowledge for learning is shown to differ in approach/withdrawal contexts for complex tasks and educational settings. How can this be explained on the level of psychological structures? We assume that approach and withdrawal behaviors are supported by distinct asymmetric domains of individual experience. Hence, we proposed that the transfer-motivation relationship is also valid for simple task learning. Two word discrimination tasks were performed by 58 schoolchildren either to get “reward” or to avoid “punishment” with points. We show that the difference of transfer effect between approach and withdrawal motivational contexts is evident for simple tasks. The implications of these results for an instructional context and normative evaluation are discussed

    New insights into the genetic etiology of Alzheimer's disease and related dementias.

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Dynamics of stress activation in rats exposed to repeated stress conditions

    No full text
    Abstract The aim of the study was to analyze the dynamics of stress-specific indices of the body functional state, i.e. the level of catecholamines in blood plasma and spectral indices of heart rate variability (HRV) in repeated immobilization stress for identifying the effects of habituation. Materials and Methods: The jugular veins of the rats (Long-Evans, n=6) were catheterized before the experiment. For immobilization, the animals were fixed mildly in a special hammock for 30 min daily during 5 days. In the process of rat immobilization as well as for 30 min before and 60 min after immobilization under the normal conditions in the home cage, ECG was noninvasively recorded for a subsequent HRV analysis based on the spectral indices. On experimental days 1, 3, and 5, blood was collected 30 min before immobilization (stage 1), 5 min after it (stage 2), at the end of immobilization (stage 3), and 30 min after the end of the immobilization period (stage 4) to test the concentration of catecholamines in blood plasma. Results: The effects of habituation to immobilization were found in the dynamics of catecholamine levels in blood plasma, heart rate, and HRV. The concentration of adrenaline and noradrenaline increased statistically significantly in the period of immobilization on the first experimental day and did not change significantly on the following days. Heart rate decreased significantly at stages 3 and 4 of the experiment (free behavior in the home cage after immobilization) on day 5 and remained at the initial high level on experimental days 1 and 3. The total power of the HRV spectrum statistically significantly decreased in the immobilization period on all experimental days. On day 1, HRV remained reduced till stage 4 of the experiment. On days 3 and 5, the total power of the HRV spectrum was restored after immobilization up to the initial level by stage 4 of the experiment. Conclusions: Five-day exposure of the animals to the repeated immobilization stress in a special hammock designed for their fixation in electrophysiological experiments resulted in habituation which is demonstrated by the dynamics of catecholamine level in the blood and HRV. The data obtained showed that the effects of habituation are displayed not only by the reduction of the stress activation intensity but by the decrease of its duration as well

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele. © 2022. The Author(s)

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele. © 2022, The Author(s)
    corecore