4 research outputs found
B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer
International audienceEnhancing anti-tumor immunity and preventing tumor escape are efficient strategies to increase the efficacy of therapeutic cancer vaccines. However, the treatment of advanced tumors remains difficult, mainly due to the immunosuppressive tumor microenvironment. Regulatory T cells and myeloid-derived suppressor cells have been extensively studied, and their role in suppressing tumor immunity is now well established. In contrast, the role of B lymphocytes in tumor immunity remains unclear because B cells can promote tumor immunity or display regulatory functions to control excessive inflammation, mainly through IL-10 secretion. Here, in a mouse model of HPV-related cancer, we demonstrate that B cells accumulated in the draining lymph node of tumor-bearing mice, due to a prolonged survival, and showed a decreased expression of MHC class II and CD86 molecules and an increased expression of Ly6A/E, PD-L1 and CD39, suggesting potential immunoregulatory properties. However, B cells from tumor-bearing mice did not show an increased ability to secrete IL-10 and a deficiency in IL-10 production did not impair tumor growth. In contrast, in B cell-deficient ÎĽMT mice, tumor rejection occurred due to a strong T cell-dependent anti-tumor response. Genetic analysis based on single nucleotide polymorphisms identified genetic variants associated with tumor rejection in ÎĽMT mice, which could potentially affect reactive oxygen species production and NK cell activity. Our results demonstrate that B cells play a detrimental role in anti-tumor immunity and suggest that targeting B cells could enhance the anti-tumor response and improve the efficacy of therapeutic cancer vaccines
Exogenous IL-2 delays memory precursors generation and is essential for enhancing memory cells effector functions
International audienceTo investigate the impact of paracrine IL-2 signals on memory precursor (MP) cell differentiation, we activated CD8 T cell in vitro in the presence or absence of exogenous IL-2 (ex-IL-2). We assessed memory differentiation by transferring these cells into virus-infected mice. Both conditions generated CD8 T cells that participate in the ongoing response and gave rise to similar memory cells. Nevertheless, when transferred into a naive host, T cells activated with ex-IL-2 generated a higher frequency of memory cells displaying increased functional memory traits. Single-cell RNA-seq analysis indicated that without ex-IL-2, cells rapidly acquire an MP signature, while in its presence they adopted an effector signature. This was confirmed at the protein level and in a functional assay. Overall, ex-IL-2 delays the transition into MP cells, allowing the acquisition of effector functions that become imprinted in their progeny. These findings may help to optimize the generation of therapeutic T cells
CD8 memory precursor cell generation is a continuous process
International audienceIn this work, we studied the generation of memory precursor cells following an acute infection by analyzing single-cell RNA-seq data that contained CD8 T cells collected during the postinfection expansion phase. We used different tools to reconstruct the developmental trajectory that CD8 T cells followed after activation. Cells that exhibited a memory precursor signature were identified and positioned on this trajectory. We found that these memory precursors are generated continuously with increasing numbers arising over time. Similarly, expression of genes associated with effector functions was also found to be raised in memory precursors at later time points. The ability of cells to enter quiescence and differentiate into memory cells was confirmed by BrdU pulse-chase experiment in vivo. Analysis of cell counts indicates that the vast majority of memory cells are generated at later time points from cells that have extensively divided