6 research outputs found

    Morphometric analysis of subcortical structures in progressive supranuclear palsy: In vivo evidence of neostriatal and mesencephalic atrophy

    Get PDF
    Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by gait and postural disturbance, gaze palsy, apathy, decreased verbal fluency and dysexecutive symptoms, with some of these clinical features potentially having origins in degeneration of frontostriatal circuits and the mesencephalon. This hypothesis was investigated by manual segmentation of the caudate and putamen on MRI scans, using previously published protocols, in 15 subjects with PSP and 15 healthy age-matched controls. Midbrain atrophy was assessed by measurement of mid-sagittal area of the midbrain and pons. Shape analysis of the caudate and putamen was performed using spherical harmonics (SPHARM-PDM, University of North Carolina). The sagittal pons area/midbrain area ratio (P/M ratio) was significantly higher in the PSP group, consistent with previous findings. Significantly smaller striatal volumes were found in the PSP group - putamina were 10% smaller and caudate volumes were 17% smaller than in controls after controlling for age and intracranial volume. Shape analysis revealed significant shape deflation in PSP in the striatum, compared to controls; with regionally significant change relevant to frontostriatal and corticostriatal circuits in the caudate. Thus, in a clinically diagnosed and biomarker-confirmed cohort with early PSP, we demonstrate that neostriatal volume and shape are significantly reduced in vivo. The findings suggest a neostriatal and mesencephalic structural basis for the clinical features of PSP leading to frontostriatal and mesocortical-striatal circuit disruption. (C) 2011 Elsevier Ireland Ltd. All rights reserved

    Diffusion Tensor Tractography versus Volumetric Imaging in the Diagnosis of Behavioral Variant Frontotemporal Dementia

    Get PDF
    MRI diffusion tensor imaging (DTI) studies of white matter integrity in behavioral variant frontotemporal dementia have consistently shown involvement of frontal and temporal white matter, corresponding to regional loss of cortical volume. Volumetric imaging has a suboptimal sensitivity as a diagnostic tool and thus we wanted to explore if DTI is a better method to discriminate patients and controls than volumetric imaging. We examined the anterior cingulum bundle in 14 patients with behavioral variant frontotemporal dementia and 22 healthy controls using deterministic manual diffusion tensor tractography, and compared DTI parameters with two measures of cortical atrophy, VBM and cortical thickness, of the anterior cingulate cortex (ACC). Statistically significant changes between patients and controls were detected in all DTI parameters, with large effect sizes. ROC-AUC was for the best DTI parameters: 0.92 (fractional anisotropy) to 0.97 (radial diffusivity), 0.82 for the best cortical parameter, VBM of the ACC. Results from the AUC were confirmed with binary logistic regression analysis including demographic variables, but only for fractional anisotropy and mean diffusivity. Ability to classify patient/nonpatient status was significantly better for mean diffusivity vs. VBM (p = 0.031), and borderline significant for fractional anisotropy vs. VBM (p = 0.062). The results indicate that DTI could offer advantages in comparison with the assessment of cortical volume in differentiating patients with behavioral variant frontotemporal dementia and controls

    Diffusion Tensor Tractography versus Volumetric Imaging in the Diagnosis of Behavioral Variant Frontotemporal Dementia

    No full text
    MRI diffusion tensor imaging (DTI) studies of white matter integrity in behavioral variant frontotemporal dementia have consistently shown involvement of frontal and temporal white matter, corresponding to regional loss of cortical volume. Volumetric imaging has a suboptimal sensitivity as a diagnostic tool and thus we wanted to explore if DTI is a better method to discriminate patients and controls than volumetric imaging. We examined the anterior cingulum bundle in 14 patients with behavioral variant frontotemporal dementia and 22 healthy controls using deterministic manual diffusion tensor tractography, and compared DTI parameters with two measures of cortical atrophy, VBM and cortical thickness, of the anterior cingulate cortex (ACC). Statistically significant changes between patients and controls were detected in all DTI parameters, with large effect sizes. ROC-AUC was for the best DTI parameters: 0.92 (fractional anisotropy) to 0.97 (radial diffusivity), 0.82 for the best cortical parameter, VBM of the ACC. Results from the AUC were confirmed with binary logistic regression analysis including demographic variables, but only for fractional anisotropy and mean diffusivity. Ability to classify patient/nonpatient status was significantly better for mean diffusivity vs. VBM (p = 0.031), and borderline significant for fractional anisotropy vs. VBM (p = 0.062). The results indicate that DTI could offer advantages in comparison with the assessment of cortical volume in differentiating patients with behavioral variant frontotemporal dementia and controls

    Regional structural hypo- and hyperconnectivity of frontal-striatal and frontal-thalamic pathways in behavioral variant frontotemporal dementia

    No full text
    Behavioral variant frontotemporal dementia (bvFTD) has been predominantly considered as a frontotemporal cortical disease, with limited direct investigation of frontal-subcortical connections. We aim to characterize the grey and white matter components of frontal-thalamic and frontal-striatal circuits in bvFTD. Twenty-four patients with bvFTD and 24 healthy controls underwent morphological and diffusion imaging. Subcortical structures were manually segmented according to published protocols. Probabilistic pathways were reconstructed separately from the dorsolateral, orbitofrontal and medial prefrontal cortex to the striatum and thalamus. Patients with bvFTD had smaller cortical and subcortical volumes, lower fractional anisotropy, and higher mean diffusivity metrics, which is consistent with disruptions in frontal-striatal-thalamic pathways. Unexpectedly, regional volumes of the striatum and thalamus connected to the medial prefrontal cortex were significantly larger in bvFTD (by 135% in the striatum, p =.032, and 217% in the thalamus, p =.004), despite smaller dorsolateral prefrontal cortex connected regional volumes (by 67% in the striatum, p =.002, and 65% in the thalamus, p =.020), and inconsistent changes in orbitofrontal cortex connected regions. These unanticipated findings may represent compensatory or maladaptive remodeling in bvFTD networks. Comparisons are made to other neuropsychiatric disorders suggesting a common mechanism of changes in frontal-subcortical networks; however, longitudinal studies are necessary to test this hypothesis

    Plasma neurofilament light protein correlates with diffusion tensor imaging metrics in frontotemporal dementia

    Get PDF
    Neurofilaments are structural components of neurons and are particularly abundant in highly myelinated axons. The levels of neurofilament light chain (NfL) in both cerebrospinal fluid (CSF) and plasma have been related to degeneration in several neurodegenerative conditions including frontotemporal dementia (FTD) and NfL is currently considered as the most promising diagnostic and prognostic fluid biomarker in FTD. Although the location and function of filaments in the healthy nervous system suggests a link between increased NfL and white matter degeneration, such a claim has not been fully elucidated in vivo, especially in the context of FTD. The present study provides evidence of an association between the plasma levels of NfL and white matter involvement in behavioral variant FTD (bvFTD) by relating plasma concentration of NfL to diffusion tensor imaging (DTI) metrics in a group of 20 bvFTD patients. The results of both voxel-wise and tract specific analysis showed that increased plasma NfL concentration is associated with a reduction in fractional anisotropy (FA) in a widespread set of white matter tracts including the superior longitudinal fasciculus, the fronto-occipital fasciculus the anterior thalamic radiation and the dorsal cingulum bundle. Plasma NfL concentration also correlated with cortical thinning in a portion of the right medial prefrontal cortex and of the right lateral orbitofrontal cortex. These results support the hypothesis that blood NfL levels reflect the global level of neurodegeneration in bvFTD and help to advance our understanding of the association between this blood biomarker for FTD and the disease process

    Structural and microstructural thalamocortical network disruption in sporadic behavioural variant frontotemporal dementia

    No full text
    Background: Using multi-block methods we combined multimodal neuroimaging metrics of thalamic morphology, thalamic white matter tract diffusion metrics, and cortical thickness to examine changes in behavioural variant frontotemporal dementia. (bvFTD). Method: Twenty-three patients with sporadic bvFTD and 24 healthy controls underwent structural and diffusion MRI scans. Clinical severity was assessed using the Clinical Dementia Rating scale and behavioural severity using the Frontal Behaviour Inventory by patient caregivers. Thalamic volumes were manually segmented. Anterior and posterior thalamic radiation fractional anisotropy and mean diffusivity were extracted using Tract-Based Spatial Statistics. Finally, cortical thickness was assessed using Freesurfer. We used shape analyses, diffusion measures, and cortical thickness as features in sparse multi-block partial least squares (PLS) discriminatory analyses to classify participants within bvFTD or healthy control groups. Sparsity was tuned with five-fold crossvalidation repeated 10 times. Final model fit was assessed using permutation testing. Additionally, sparse multiblock PLS was used to examine associations between imaging features and measures of dementia severity. Results: Bilateral anterior-dorsal thalamic atrophy, reduction in mean diffusivity of thalamic projections, and frontotemporal cortical thinning, were the main features predicting bvFTD group membership. The model had a sensitivity of 96%, specificity of 68%, and was statistically significant using permutation testing (p = 0.012). For measures of dementia severity, we found similar involvement of regional thalamic and cortical areas as in discrimination analyses, although more extensive thalamo-cortical white matter metric changes. Conclusions: Using multimodal neuroimaging, we demonstrate combined structural network dysfunction of anterior cortical regions, cortical-thalamic projections, and anterior thalamic regions in sporadic bvFTD
    corecore