20 research outputs found
Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study
The honey bee Apis mellifera is the most abundant managed pollinator in diverse crops worldwide. Consequently, it is exposed to a plethora of environmental stressors, among which are the agrochemicals. In agroecosystems, the herbicide glyphosate (GLY) is one of the most applied. In laboratory assessments, GLY affects the honey bee larval development by delaying its moulting, among other negative effects. However, it is still unknown how GLY affects larval physiology when there are no observable signs of toxicity. We carried out a longitudinal experimental design using the in vitro rearing procedure. Larvae were fed with food containing or not a sub-lethal dose of GLY in chronic exposure (120 h). Individuals without observable signs of toxicity were sampled and their gene expression profile was analyzed with a transcriptomic approach to compare between treatments. Even though 29% of larvae were asymptomatic in the exposed group, they showed transcriptional changes in several genes after the GLY chronic intake. A total of 19 transcripts were found to be differentially expressed in the RNA-Seq experiment, mainly linked with defensive response and intermediary metabolism processes. Furthermore, the enriched functional categories in the transcriptome of the exposed asymptomatic larvae were linked with enzymes with catalytic and redox activity. Our results suggest an enhanced catabolism and oxidative metabolism in honey bee larvae as a consequence of the sub-lethal exposure to GLY, even in the absence of observable symptoms.Fil: Vázquez, Diego Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio del Grupo de Estudio de Insectos Sociales; ArgentinaFil: Latorre Estivalis, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; ArgentinaFil: Ons, Sheila. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Farina, Walter Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio del Grupo de Estudio de Insectos Sociales; Argentin
Comparative analysis of detoxification-related gene superfamilies across five hemipteran species
Hemiptera is one of the most speciose orders of insects, and the most speciose considering Hemimetabola. Through their evolutive history, hemipterans with different feeding habits have adapted to deal with different chemical challenges. Three major gene families are involved in xenobiotic detoxification in insects: the cytochromes P450 (CYPs), carboxyl/cholinesterases (CCEs), and glutathione transferases (GSTs). Here we perform a comparative analysis on the complement of these gene superfamilies across five hemipteran species; four heteropterans (the pentatomid plant feeders Nezara viridula and Halyomorpha halys; the hematophagous Cimex lectularius, Cimicidae, and Rhodnius prolixus, Reduviidae), and one Auchenorrhyncha plant feeder (Nilaparvata lugens).Fil: Volonté, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnol.conicet - la Plata. Centro de Endocrinología Exp.y Aplicada (i). Grupo Vinculado Cenexa-fcex-unlp; Argentina. Centro Regional de Estudios Genomicos (creg) ; Facultad de Cs.exactas ; Universidad Nacional de la Plata;Fil: Traverso, Lucila María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Endocrinología Experimental y Aplicada. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Endocrinología Experimental y Aplicada; Argentina. Centro Regional de Estudios Genomicos (creg) ; Facultad de Cs.exactas ; Universidad Nacional de la Plata;Fil: Latorre Estivalis, Jose Manuel. Centro Regional de Estudios Genomicos (creg) ; Facultad de Cs.exactas ; Universidad Nacional de la Plata; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Cunha Almeida, Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Ons, Sheila. Centro Regional de Estudios Genomicos (creg) ; Facultad de Cs.exactas ; Universidad Nacional de la Plata
Molecular basis of peripheral olfactory plasticity in Rhodnius prolixus, a Chagas disease vector
Olfaction is fundamental for most animals and critical for different aspects of triatomine biology, including host-seeking, reproduction, avoidance of predators, and aggregation in shelters. Ethological and physiological aspects of these olfactory-mediated behaviors are well-understood, but their molecular bases are still largely unknown. Here we investigated changes in the molecular mechanisms at the peripheral olfactory level in response to different physiological and developmental conditions. For this, the antennal expression levels of the odorant (Orco) and ionotropic (IR8a, IR25a, and IR76b) coreceptor genes were determined in Rhodnius prolixus by means of quantitative real-time PCR (qRT-PCR) analysis. Gene expression changes were analyzed to test the effect of feeding and imaginal molt for both sexes. Moreover, we analyzed whether expression of these genes changed during the early life of adult bugs. Under these conditions bugs display distinct behavioral responses to diverse chemical stimuli. A significantly decreased expression was induced by blood feeding on all coreceptor genes. The expression of all genes was significantly increased following the imaginal molt. These results show that olfactory coreceptor genes have their expression altered as a response to physiological or developmental changes. Our study suggests that olfactory coreceptor genes confer adaptability to the peripheral olfactory function, probably underlying the known plasticity of triatomine olfactory-mediated behavior
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (?702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immunedeficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.Fil: Calderón Fernández, Gustavo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Esponda Behrens, Natalia Irene. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Juarez, Marta Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Latorre Estivalis, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Oswaldo Cruz; Brasil. Instituto Nacional de Ciencia e Tecnologia en Entomología Molecular; BrasilFil: Lavore, Andres Esteban. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Lazzari, Claudio Ricardo. Université François Rabelais; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lorenzo, Marcelo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Oswaldo Cruz; Brasil. Instituto Nacional de Ciencia e Tecnologia en Entomología Molecular; BrasilFil: Ons, Sheila. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Pagola, Lucia Elena. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Pascual, Agustina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Pedrini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Sterkel, Marcos. Universidade Federal do Rio de Janeiro; Brasil. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin
Molecular bases of sensory processes in kissing bugs, vectors of Chagas disease
Submitted by Nuzia Santos ([email protected]) on 2019-10-04T19:37:01Z
No. of bitstreams: 1
Molecular bases of sensory .pdf: 178117 bytes, checksum: b411773fb1095277e7e155612510d57b (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2019-10-04T19:38:36Z (GMT) No. of bitstreams: 1
Molecular bases of sensory .pdf: 178117 bytes, checksum: b411773fb1095277e7e155612510d57b (MD5)Made available in DSpace on 2019-10-04T19:38:36Z (GMT). No. of bitstreams: 1
Molecular bases of sensory .pdf: 178117 bytes, checksum: b411773fb1095277e7e155612510d57b (MD5)
Previous issue date: 2019CREG-UNLP. Argentina.Fundação Oswaldo Cruz. Instituto Rene Rachou. Belo Horizonte, MG, Brasil.Sensory processes represent an information gathering interface between animals and their surrounding world. Therefore, they serve to scan the environment for resources and threats. The behavior of kissing bugs has been studied to aid their control because they transmit Chagas disease to humans. Besides, a few triatomines represent important insect models since Wigglesworth times. These hematophagous insects rely on different sensory systems to scan their environment for blood-sources, mating partners, and hiding places. The study of the molecular bases of sensory processes has undergone a dramatic progress due the advent of new technologies allowing mass-sequencing of genes. Here, we focus on reviewing the fundamental knowledge gathered to date about the molecular bases of kissing bug sensory processes
Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus
International audienceBACKGROUND: Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model.RESULTS: Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines.CONCLUSIONS: We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour
Thermosensation and the TRPV channel in Rhodnius prolixus
The thermal sense of triatomine bugs, vectors of Chagas disease, is unique among insects. Not only do these bugs exhibit the highest sensitivity to heat known in any animal up to date, but they can also perceive the infrared radiation emitted by the body of their warm-blooded hosts. The sensory basis of this capacity has just started to be unravelled. To shed additional light on our understanding of thermosensation, we initiated an analysis of the genetic basis of the thermal sense in Rhodnius prolixus. We tested the hypothesis that a TRPV (transient receptor potential vanilloid) channel receptor is involved in the evaluation of heat in this species. Two different approaches were adopted. Initially, we analysed the expression of a TRPV candidate for this function, i.e., RproIav, in different tissues. Subsequently, we tested the effects of capsaicin and capsazepine, two molecules known to interact with mammal TRPV1, using three different behavioural protocols for evaluating thermal responses: (1) proboscis extension response (PER), (2) thermopreference in a temperature gradient and (3) spatial learning in an operant conditioning context. Bioinformatic analyses confirmed that the characteristic features typical of the TRPV channel subfamily are found in the RproIav protein sequence. Molecular analysis showed that RproIav is expressed in R. prolixus, not only in the antennae, but also in other body structures bearing sensory organs. Behavioural experiments consistently revealed that capsaicin treated insects are less responsive to heat stimuli and prefer lower temperatures than non-treated insects, and that they fail to orient in space. Conversely, capsazepine induces the opposite behaviours. The latter data suggest that triatomine thermoreception is based on the activation of a TRP channel, with a similar mechanism to that described for mammal TRPV1. The expression of RproIav in diverse sensory structures suggests that this receptor channel is potentially involved in bug thermoreception. This constitutes solid evidence that thermosensation could be based on the activation of TRP receptors that are expressed in different tissues in R. prolixus. Whether RproIav channel is a potential target for the compounds tested and whether it mediates the observed effects on behaviour still deserves to be confirmed by further research.Fil: Zermoglio, Paula Florencia. Université François Rabelais de Tours; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Latorre Estivalis, Jose Manuel. Fundación Oswaldo Cruz; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Crespo, José Emilio. Université François Rabelais de Tours; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Lorenzo, Marcelo Gustavo. Fundación Oswaldo Cruz; BrasilFil: Lazzari, Claudio Ricardo. Université François Rabelais de Tours; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Genetic basis of triatomine behavior: lessons from available insect genomes
Triatomines have been important model organisms for behavioural research. Diverse reports about triatomine host search, pheromone communication in the sexual, shelter and alarm contexts, daily cycles of activity, refuge choice and behavioural plasticity have been published in the last two decades. In recent times, a variety of molecular genetics techniques has allowed researchers to investigate elaborate and complex questions about the genetic bases of the physiology of insects. This, together with the current characterisation of the genome sequence of Rhodnius prolixus allows the resurgence of this excellent insect physiology model in the omics era. In the present revision, we suggest that studying the molecular basis of behaviour and sensory ecology in triatomines will promote a deeper understanding of fundamental aspects of insect and, particularly, vector biology. This will allow uncovering unknown features of essential insect physiology questions for a hemimetabolous model organism, promoting more robust comparative studies of insect sensory function and cognition
Glyphosate affects larval gut microbiota and metamorphosis of honey bees with differences between rearing procedures
The honey bee Apis mellifera is a sentinel species of the pollinator community which is exposed to a wide variety of pesticides. In the last half-century, the pesticide most applied worldwide has been the herbicide glyphosate (GLY) used for weed control and with microbiocide effects. After its application in crops, the GLY residues have been detected in flowers visited by honey bees as well as in the stored food of their hives. Therefore, the honey bee brood can ingest the herbicide during larval development. Recent studies proved that GLY has detrimental effects on adult honey bees and other insects associated with the disturbance of their gut microbiota. GLY induces changes in the growth, metabolism and survival of honey bees and stingless bees reared in vitro. However, the effect of GLY on larval microbiota is unknown so far and there are few studies with an in-hive exposure to GLY. For these reasons, this study aims to determine whether GLY induces dysbiosis in honey bee larvae and affects their metamorphosis during the exposure period (pre-defecation) and the post-exposure period. Furthermore, we assessed this herbicide in vitro and in the hive to compare its effects on different rearing procedures. Finally, we tested the pigment BLUE1 as an indirect exposure marker to detect and estimate the in-hive intake concentration of GLY. Our results indicate that the intake of field-relevant concentrations of GLY induced a slowdown in growth with dysbiosis in the larval gut microbiota followed by late effects on their metamorphosis such as teratogenesis and mortality of newly emerged bees. Nevertheless, brood from the same colonies expressed different signs of toxicity depending on the rearing procedure and in a dose-dependent manner.Fil: Vázquez, Diego Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio del Grupo de Estudio de Insectos Sociales; ArgentinaFil: Villegas Martínez, Luis E.. Ohio State University; Estados UnidosFil: Medina, Virginia. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; ArgentinaFil: Latorre Estivalis, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio del Grupo de Estudio de Insectos Sociales; ArgentinaFil: Zavala, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Farina, Walter Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental. Laboratorio del Grupo de Estudio de Insectos Sociales; Argentin