4 research outputs found

    The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial

    Get PDF
    Introduction: Obese breast cancer patients have worse prognosis than normal weight patients, but the level at which obesity is prognostically unfavorable is unclear. Methods: This retrospective analysis was performed using data from the SUCCESS A trial, in which 3754 patients with high-risk early breast cancer were randomized to anthracycline- and taxane-based chemotherapy with or without gemcitabine. Patients were classified as underweight/normal weight (body mass index (BMI) < 25.0), overweight (BMI 25.0–29.9), slightly obese (BMI 30.0–34.9), moderately obese (BMI 35.0–39.9) and severely obese (BMI ≥ 40.0), and the effect of BMI on disease-free survival (DFS) and overall survival (OS) was evaluated (median follow-up 65 months). In addition, subgroup analyses were conducted to assess the effect of BMI in luminal A-like, luminal B-like, HER2 (human epidermal growth factor 2)-positive and triple-negative tumors. Results: Multivariate analyses revealed an independent prognostic effect of BMI on DFS (p = 0.001) and OS (p = 0.005). Compared with underweight/normal weight patients, severely obese patients had worse DFS (hazard ratio (HR) 2.70, 95 % confidence interval (CI) 1.71–4.28, p < 0.001) and OS (HR 2.79, 95 % CI 1.63–4.77, p < 0.001), while moderately obese, slightly obese and overweight patients did not differ from underweight/normal weight patients with regard to DFS or OS. Subgroup analyses showed a similar significant effect of BMI on DFS and OS in patients with triple-negative breast cancer (TNBC), but not in patients with other tumor subtypes. Conclusions: Severe obesity (BMI ≥ 40) significantly worsens prognosis in early breast cancer patients, particularly for triple-negative tumors. Trial registration: Clinicaltrials.gov NCT02181101. Registered September 200

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The use of unmanned aerial vehicles (UAVs) for engineering geology applications

    No full text
    corecore